Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 5360. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 03-Feb-2015 ****************************************** %chk=\\icnas3.cc.ic.ac.uk\yz13712\Desktop\3rdyearlab\ZYT_bh3_opt C1 631g.chk Default route: MaxDisk=10GB ---------------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity scf=conver=9 integral=grid=ul trafine ---------------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,6=9,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,6=9,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ---------------- BH3 optimization ---------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 B 1.27148 -4.27835 0. H 2.77011 -4.27835 0.07852 H 0.52148 -2.97931 0. H 0.52148 -5.57739 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.5007 estimate D2E/DX2 ! ! R2 R(1,3) 1.5 estimate D2E/DX2 ! ! R3 R(1,4) 1.5 estimate D2E/DX2 ! ! A1 A(2,1,3) 119.9547 estimate D2E/DX2 ! ! A2 A(2,1,4) 119.9547 estimate D2E/DX2 ! ! A3 A(3,1,4) 120.0 estimate D2E/DX2 ! ! D1 D(2,1,4,3) 176.5377 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 1.271478 -4.278350 0.000000 2 1 0 2.770107 -4.278350 0.078524 3 1 0 0.521478 -2.979312 0.000000 4 1 0 0.521478 -5.577389 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.500685 0.000000 3 H 1.500000 2.598076 0.000000 4 H 1.500000 2.598076 2.598076 0.000000 This structure is nearly, but not quite of a higher symmetry. Consider Symm=Loose if the higher symmetry is desired. Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -0.000514 0.000009 -0.009804 2 1 0 1.499707 -0.026562 -0.036030 3 1 0 -0.725564 1.312093 0.042524 4 1 0 -0.771573 -1.285576 0.042524 --------------------------------------------------------------------- Rotational constants (GHZ): 148.5083354 148.5083124 74.2896388 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 5.9020079336 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.93D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 ExpMin= 1.27D-01 ExpMax= 2.07D+03 ExpMxC= 3.11D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.5337649766 A.U. after 10 cycles NFock= 10 Conv=0.19D-09 -V/T= 2.0339 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -6.85749 -0.47090 -0.32275 -0.32262 Alpha virt. eigenvalues -- -0.07947 0.03620 0.10081 0.10099 0.41791 Alpha virt. eigenvalues -- 0.42139 0.42143 0.53555 0.78717 0.81403 Alpha virt. eigenvalues -- 0.81406 1.20069 1.20083 1.35747 1.36459 Alpha virt. eigenvalues -- 1.36487 2.02308 2.12180 2.15067 2.15094 Alpha virt. eigenvalues -- 2.22450 2.22452 2.50594 2.70537 2.70558 Alpha virt. eigenvalues -- 3.49095 Condensed to atoms (all electrons): 1 2 3 4 1 B 3.798444 0.353025 0.353091 0.353091 2 H 0.353025 0.724927 -0.015207 -0.015207 3 H 0.353091 -0.015207 0.724723 -0.015202 4 H 0.353091 -0.015207 -0.015202 0.724723 Mulliken charges: 1 1 B 0.142349 2 H -0.047539 3 H -0.047405 4 H -0.047405 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 B 0.000000 Electronic spatial extent (au): = 44.7443 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0031 Y= 0.0001 Z= -0.0439 Tot= 0.0440 Quadrupole moment (field-independent basis, Debye-Ang): XX= -9.8911 YY= -9.8911 ZZ= -7.9727 XY= 0.0000 XZ= 0.0671 YZ= -0.0012 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.6395 YY= -0.6394 ZZ= 1.2789 XY= 0.0000 XZ= 0.0671 YZ= -0.0012 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.5055 YYY= 0.0270 ZZZ= -0.0795 XYY= -0.5069 XXY= -0.0269 XXZ= 0.0101 XZZ= -0.0056 YZZ= 0.0001 YYZ= 0.0458 XYZ= 0.0006 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -33.2617 YYYY= -33.2811 ZZZZ= -8.4126 XXXY= -0.0004 XXXZ= 0.4143 YYYX= 0.0001 YYYZ= -0.0046 ZZZX= 0.4929 ZZZY= -0.0087 XXYY= -11.0951 XXZZ= -7.5011 YYZZ= -7.5026 XXYZ= -0.0042 YYXZ= 0.0874 ZZXY= 0.0000 N-N= 5.902007933591D+00 E-N=-7.170904164725D+01 KE= 2.566482801558D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 -0.000138271 0.000000003 0.006965225 2 1 -0.073186647 -0.000000029 -0.004878903 3 1 0.036662446 -0.063468865 -0.001043164 4 1 0.036662472 0.063468891 -0.001043157 ------------------------------------------------------------------- Cartesian Forces: Max 0.073186647 RMS 0.036714742 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.073341678 RMS 0.048003627 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 A1 A2 R1 0.11315 R2 0.00000 0.11333 R3 0.00000 0.00000 0.11333 A1 0.00000 0.00000 0.00000 0.16000 A2 0.00000 0.00000 0.00000 0.00000 0.16000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.16000 D1 0.00000 0.00230 ITU= 0 Eigenvalues --- 0.00244 0.11315 0.11333 0.11333 0.16000 Eigenvalues --- 0.16000 RFO step: Lambda=-8.24573370D-02 EMin= 2.44401194D-03 Linear search not attempted -- first point. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.462 Iteration 1 RMS(Cart)= 0.11333792 RMS(Int)= 0.00034517 Iteration 2 RMS(Cart)= 0.00023021 RMS(Int)= 0.00001843 Iteration 3 RMS(Cart)= 0.00000006 RMS(Int)= 0.00001843 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.83588 -0.07334 0.00000 -0.17338 -0.17338 2.66251 R2 2.83459 -0.07330 0.00000 -0.17312 -0.17312 2.66147 R3 2.83459 -0.07330 0.00000 -0.17312 -0.17312 2.66147 A1 2.09360 0.00000 0.00000 0.00016 0.00013 2.09373 A2 2.09360 0.00009 0.00000 0.00033 0.00030 2.09390 A3 2.09440 0.00005 0.00000 0.00024 0.00022 2.09461 D1 3.08116 0.00256 0.00000 0.01395 0.01395 3.09511 Item Value Threshold Converged? Maximum Force 0.073342 0.000450 NO RMS Force 0.048004 0.000300 NO Maximum Displacement 0.172876 0.001800 NO RMS Displacement 0.113352 0.001200 NO Predicted change in Energy=-3.303206D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 1.271332 -4.278380 0.005454 2 1 0 2.678625 -4.278301 0.073510 3 1 0 0.567326 -3.058581 -0.000219 4 1 0 0.567257 -5.498139 -0.000222 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.408937 0.000000 3 H 1.408391 2.439413 0.000000 4 H 1.408391 2.439532 2.439558 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -0.000077 0.000128 -0.007087 2 1 0 0.601066 -1.273989 0.011806 3 1 0 0.802862 1.157063 0.011815 4 1 0 -1.403543 0.116285 0.011816 --------------------------------------------------------------------- Rotational constants (GHZ): 168.4881090 168.4633766 84.2616711 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 6.2860077007 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.86D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "\\icnas3.cc.ic.ac.uk\yz13712\Desktop\3rdyearlab\ZYT_bh3_opt C1 631g.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.849165 0.009477 0.014660 0.527840 Ang= 63.76 deg. ExpMin= 1.27D-01 ExpMax= 2.07D+03 ExpMxC= 3.11D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.5694903434 A.U. after 9 cycles NFock= 9 Conv=0.19D-09 -V/T= 2.0295 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 -0.000053891 0.000010947 0.005268125 2 1 -0.062903064 -0.000008262 -0.003953476 3 1 0.031474447 -0.054520163 -0.000657469 4 1 0.031482509 0.054517478 -0.000657180 ------------------------------------------------------------------- Cartesian Forces: Max 0.062903064 RMS 0.031527024 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.063020605 RMS 0.041233834 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -3.57D-02 DEPred=-3.30D-02 R= 1.08D+00 TightC=F SS= 1.41D+00 RLast= 3.00D-01 DXNew= 5.0454D-01 9.0096D-01 Trust test= 1.08D+00 RLast= 3.00D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.09521 R2 -0.01790 0.09548 R3 -0.01790 -0.01785 0.09547 A1 0.00007 0.00007 0.00007 0.16000 A2 0.00003 0.00003 0.00003 0.00000 0.16000 A3 0.00001 0.00001 0.00001 0.00000 0.00000 D1 -0.00082 -0.00083 -0.00083 0.00000 0.00000 A3 D1 A3 0.16000 D1 0.00000 0.00234 ITU= 1 0 Use linear search instead of GDIIS. Linear search step of 0.600 exceeds DXMaxT= 0.505 but not scaled. Quartic linear search produced a step of 2.00000. Iteration 1 RMS(Cart)= 0.13095530 RMS(Int)= 0.09592412 Iteration 2 RMS(Cart)= 0.09592439 RMS(Int)= 0.00012320 Iteration 3 RMS(Cart)= 0.00003157 RMS(Int)= 0.00011047 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00011047 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.66251 -0.06302 -0.34676 0.00000 -0.34676 2.31575 R2 2.66147 -0.06295 -0.34623 0.00000 -0.34623 2.31524 R3 2.66147 -0.06295 -0.34623 0.00000 -0.34623 2.31524 A1 2.09373 0.00001 0.00026 0.00000 0.00009 2.09382 A2 2.09390 0.00006 0.00060 0.00000 0.00043 2.09433 A3 2.09461 0.00001 0.00043 0.00000 0.00026 2.09488 D1 3.09511 0.00210 0.02790 0.00000 0.02790 3.12301 Item Value Threshold Converged? Maximum Force 0.063021 0.000450 NO RMS Force 0.041234 0.000300 NO Maximum Displacement 0.345966 0.001800 NO RMS Displacement 0.226769 0.001200 NO Predicted change in Energy=-5.474628D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 1.271099 -4.278429 0.014699 2 1 0 2.495548 -4.278220 0.064034 3 1 0 0.659037 -3.217197 -0.000100 4 1 0 0.658857 -5.339556 -0.000108 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.225442 0.000000 3 H 1.225174 2.121946 0.000000 4 H 1.225174 2.122258 2.122358 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -0.000077 0.000080 -0.002464 2 1 0 0.484436 -1.125492 0.004105 3 1 0 0.732792 0.981870 0.004107 4 1 0 -1.216842 0.143221 0.004108 --------------------------------------------------------------------- Rotational constants (GHZ): 222.7288968 222.6246748 111.3434106 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 7.2263929580 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.71D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "\\icnas3.cc.ic.ac.uk\yz13712\Desktop\3rdyearlab\ZYT_bh3_opt C1 631g.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999851 0.000001 0.000000 0.017235 Ang= 1.98 deg. ExpMin= 1.27D-01 ExpMax= 2.07D+03 ExpMxC= 3.11D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.6139126431 A.U. after 10 cycles NFock= 10 Conv=0.12D-09 -V/T= 2.0149 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 0.000090871 0.000025459 0.001642329 2 1 -0.014660097 -0.000020817 -0.001058634 3 1 0.007273970 -0.012653879 -0.000292236 4 1 0.007295256 0.012649237 -0.000291460 ------------------------------------------------------------------- Cartesian Forces: Max 0.014660097 RMS 0.007332413 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.014690834 RMS 0.009581893 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 2 3 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.12186 R2 0.00873 0.12209 R3 0.00873 0.00875 0.12208 A1 0.00004 0.00004 0.00004 0.16000 A2 0.00002 0.00002 0.00002 0.00000 0.16000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 D1 -0.00106 -0.00106 -0.00106 0.00000 0.00000 A3 D1 A3 0.16000 D1 0.00000 0.00233 ITU= 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00232 0.11321 0.11333 0.13951 0.16000 Eigenvalues --- 0.16000 RFO step: Lambda=-2.97578755D-05 EMin= 2.31604112D-03 Quartic linear search produced a step of 0.18483. Iteration 1 RMS(Cart)= 0.04825709 RMS(Int)= 0.00199526 Iteration 2 RMS(Cart)= 0.00121824 RMS(Int)= 0.00132025 Iteration 3 RMS(Cart)= 0.00000154 RMS(Int)= 0.00132025 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00132025 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.31575 -0.01469 -0.06409 0.00036 -0.06374 2.25201 R2 2.31524 -0.01459 -0.06400 0.00121 -0.06279 2.25246 R3 2.31524 -0.01460 -0.06400 0.00114 -0.06285 2.25239 A1 2.09382 0.00004 0.00002 0.00089 -0.00111 2.09271 A2 2.09433 0.00001 0.00008 0.00057 -0.00136 2.09297 A3 2.09488 -0.00003 0.00005 0.00035 -0.00162 2.09326 D1 3.12301 0.00094 0.00516 0.11248 0.11746 -3.04271 Item Value Threshold Converged? Maximum Force 0.014691 0.000450 NO RMS Force 0.009582 0.000300 NO Maximum Displacement 0.063555 0.001800 NO RMS Displacement 0.048860 0.001200 NO Predicted change in Energy=-2.006342D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 1.270226 -4.278396 0.045148 2 1 0 2.461916 -4.278294 0.052703 3 1 0 0.676235 -3.246452 -0.009660 4 1 0 0.676164 -5.310260 -0.009667 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.191714 0.000000 3 H 1.191948 2.063310 0.000000 4 H 1.191913 2.063432 2.063808 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -0.000024 0.000006 0.012767 2 1 0 0.141608 -1.182772 -0.021277 3 1 0 0.953855 0.713936 -0.021276 4 1 0 -1.095343 0.468804 -0.021280 --------------------------------------------------------------------- Rotational constants (GHZ): 235.2968330 235.1602708 117.7649612 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 7.4292344845 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.54D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "\\icnas3.cc.ic.ac.uk\yz13712\Desktop\3rdyearlab\ZYT_bh3_opt C1 631g.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.989706 -0.000003 -0.000001 0.143119 Ang= -16.46 deg. ExpMin= 1.27D-01 ExpMax= 2.07D+03 ExpMxC= 3.11D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.6150717024 A.U. after 9 cycles NFock= 9 Conv=0.63D-09 -V/T= 2.0112 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 0.000196055 0.000025447 -0.007793613 2 1 0.000303497 -0.000009286 0.002609250 3 1 -0.000250454 0.000231490 0.002592359 4 1 -0.000249098 -0.000247651 0.002592004 ------------------------------------------------------------------- Cartesian Forces: Max 0.007793613 RMS 0.002603817 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.005085751 RMS 0.001933359 Search for a local minimum. Step number 4 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 4 DE= -1.16D-03 DEPred=-2.01D-03 R= 5.78D-01 TightC=F SS= 1.41D+00 RLast= 1.60D-01 DXNew= 8.4853D-01 4.8149D-01 Trust test= 5.78D-01 RLast= 1.60D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.13955 R2 0.02598 0.13890 R3 0.02603 0.02562 0.13900 A1 -0.00118 -0.00117 -0.00117 0.15998 A2 -0.00010 -0.00011 -0.00011 -0.00003 0.15999 A3 -0.00028 -0.00028 -0.00028 -0.00003 -0.00002 D1 -0.02427 -0.02393 -0.02396 0.00016 -0.00035 A3 D1 A3 0.15998 D1 -0.00035 0.01249 ITU= 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00367 0.11321 0.11333 0.15996 0.16000 Eigenvalues --- 0.20018 RFO step: Lambda=-3.24438395D-03 EMin= 3.66862404D-03 Quartic linear search produced a step of -0.17282. Iteration 1 RMS(Cart)= 0.06704518 RMS(Int)= 0.17923435 Iteration 2 RMS(Cart)= 0.04104003 RMS(Int)= 0.10670927 Iteration 3 RMS(Cart)= 0.04023348 RMS(Int)= 0.04949656 Iteration 4 RMS(Cart)= 0.01528994 RMS(Int)= 0.04276055 Iteration 5 RMS(Cart)= 0.00120866 RMS(Int)= 0.04273041 Iteration 6 RMS(Cart)= 0.00009093 RMS(Int)= 0.04273024 Iteration 7 RMS(Cart)= 0.00000683 RMS(Int)= 0.04273024 Iteration 8 RMS(Cart)= 0.00000051 RMS(Int)= 0.04273024 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.25201 0.00032 0.01101 -0.09422 -0.08320 2.16881 R2 2.25246 0.00021 0.01085 -0.09379 -0.08294 2.16951 R3 2.25239 0.00022 0.01086 -0.09378 -0.08292 2.16947 A1 2.09271 -0.00002 0.00019 0.01834 -0.05062 2.04210 A2 2.09297 0.00025 0.00024 0.01937 -0.03951 2.05346 A3 2.09326 0.00022 0.00028 0.01886 -0.03998 2.05328 D1 -3.04271 -0.00509 -0.02030 -0.65921 -0.64774 2.59274 Item Value Threshold Converged? Maximum Force 0.005086 0.000450 NO RMS Force 0.001933 0.000300 NO Maximum Displacement 0.311357 0.001800 NO RMS Displacement 0.154094 0.001200 NO Predicted change in Energy=-2.075494D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 1.275154 -4.280033 -0.119615 2 1 0 2.400514 -4.275536 0.105612 3 1 0 0.706383 -3.296691 0.046426 4 1 0 0.702489 -5.261142 0.046100 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.147685 0.000000 3 H 1.148056 1.957478 0.000000 4 H 1.148034 1.964242 1.964455 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -0.000981 -0.000044 -0.069650 2 1 0 0.556085 -0.986173 0.115843 3 1 0 0.582520 0.971127 0.115789 4 1 0 -1.133700 0.015264 0.116618 --------------------------------------------------------------------- Rotational constants (GHZ): 251.0979465 248.8566112 130.2582432 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 7.7239061250 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.07D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "\\icnas3.cc.ic.ac.uk\yz13712\Desktop\3rdyearlab\ZYT_bh3_opt C1 631g.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.980944 -0.000029 -0.000189 -0.194289 Ang= -22.41 deg. ExpMin= 1.27D-01 ExpMax= 2.07D+03 ExpMxC= 3.11D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.6040990208 A.U. after 10 cycles NFock= 10 Conv=0.19D-09 -V/T= 2.0056 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 -0.001182614 0.000432652 0.034805784 2 1 0.027298348 -0.000374190 -0.010641089 3 1 -0.013257368 0.022933453 -0.012088352 4 1 -0.012858367 -0.022991915 -0.012076343 ------------------------------------------------------------------- Cartesian Forces: Max 0.034805784 RMS 0.017699421 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.029557902 RMS 0.020011040 Search for a local minimum. Step number 5 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 5 4 DE= 1.10D-02 DEPred=-2.08D-03 R=-5.29D+00 Trust test=-5.29D+00 RLast= 6.68D-01 DXMaxT set to 2.52D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.15994 R2 0.04628 0.15911 R3 0.04620 0.04570 0.15894 A1 -0.00181 -0.00215 -0.00211 0.13256 A2 0.00611 0.00580 0.00579 -0.02113 0.14594 A3 0.00596 0.00565 0.00565 -0.02124 -0.01413 D1 0.00462 0.00475 0.00454 -0.00730 0.00344 A3 D1 A3 0.14579 D1 0.00345 0.05185 ITU= -1 1 0 1 0 Use linear search instead of GDIIS. Energy rises -- skip Quadratic/GDIIS search. Quartic linear search produced a step of -0.88187. Iteration 1 RMS(Cart)= 0.07372272 RMS(Int)= 0.14044339 Iteration 2 RMS(Cart)= 0.04319876 RMS(Int)= 0.06530428 Iteration 3 RMS(Cart)= 0.03643804 RMS(Int)= 0.00462792 Iteration 4 RMS(Cart)= 0.00183672 RMS(Int)= 0.00423115 Iteration 5 RMS(Cart)= 0.00000115 RMS(Int)= 0.00423115 Iteration 6 RMS(Cart)= 0.00000001 RMS(Int)= 0.00423115 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.16881 0.02468 0.07337 0.00000 0.07337 2.24218 R2 2.16951 0.02446 0.07315 0.00000 0.07315 2.24266 R3 2.16947 0.02432 0.07312 0.00000 0.07312 2.24259 A1 2.04210 -0.00023 0.04464 0.00000 0.05110 2.09320 A2 2.05346 0.00808 0.03484 0.00000 0.04131 2.09477 A3 2.05328 0.00808 0.03526 0.00000 0.04172 2.09500 D1 2.59274 0.02956 0.57122 0.00000 0.57135 -3.11910 Item Value Threshold Converged? Maximum Force 0.029558 0.000450 NO RMS Force 0.020011 0.000300 NO Maximum Displacement 0.274036 0.001800 NO RMS Displacement 0.136981 0.001200 NO Predicted change in Energy=-5.420588D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 1.270817 -4.278590 0.025399 2 1 0 2.456850 -4.277970 0.059157 3 1 0 0.678695 -3.250488 -0.002971 4 1 0 0.678178 -5.306353 -0.003061 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.186513 0.000000 3 H 1.186763 2.054607 0.000000 4 H 1.186729 2.055508 2.055864 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -0.000133 0.000009 0.002888 2 1 0 0.445301 -1.099692 -0.004812 3 1 0 0.730723 0.934994 -0.004811 4 1 0 -1.175360 0.164654 -0.004816 --------------------------------------------------------------------- Rotational constants (GHZ): 237.5679661 237.2223328 118.7053547 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 7.4614266109 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.51D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Lowest energy guess from the checkpoint file: "\\icnas3.cc.ic.ac.uk\yz13712\Desktop\3rdyearlab\ZYT_bh3_opt C1 631g.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.991219 0.000001 0.000005 -0.132231 Ang= 15.20 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 0.998022 0.000004 0.000197 0.062872 Ang= 7.21 deg. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.6152664538 A.U. after 8 cycles NFock= 8 Conv=0.27D-09 -V/T= 2.0106 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 0.000004400 0.000083489 -0.001735855 2 1 0.002824420 -0.000057772 0.000677010 3 1 -0.001440368 0.002322952 0.000528632 4 1 -0.001388452 -0.002348670 0.000530213 ------------------------------------------------------------------- Cartesian Forces: Max 0.002824420 RMS 0.001498182 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.002842508 RMS 0.001858965 Search for a local minimum. Step number 6 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 5 4 6 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.15779 R2 0.04404 0.15677 R3 0.04398 0.04338 0.15665 A1 0.00386 0.00350 0.00351 0.13136 A2 -0.00046 -0.00071 -0.00070 -0.02100 0.14645 A3 -0.00063 -0.00088 -0.00087 -0.02109 -0.01362 D1 0.00143 0.00154 0.00134 0.00001 -0.00028 A3 D1 A3 0.14630 D1 -0.00028 0.05086 ITU= 0 -1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.05084 0.11321 0.11333 0.15944 0.16000 Eigenvalues --- 0.24514 RFO step: Lambda=-1.21688216D-04 EMin= 5.08422537D-02 Quartic linear search produced a step of 0.01903. Iteration 1 RMS(Cart)= 0.00903408 RMS(Int)= 0.00008432 Iteration 2 RMS(Cart)= 0.00004213 RMS(Int)= 0.00006328 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00006328 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.24218 0.00284 -0.00019 0.01222 0.01203 2.25421 R2 2.24266 0.00272 -0.00019 0.01131 0.01112 2.25378 R3 2.24259 0.00271 -0.00019 0.01125 0.01107 2.25366 A1 2.09320 0.00009 0.00001 0.00013 0.00004 2.09324 A2 2.09477 -0.00002 0.00003 0.00021 0.00015 2.09492 A3 2.09500 -0.00005 0.00003 0.00009 0.00002 2.09503 D1 -3.11910 -0.00116 -0.00145 -0.02219 -0.02364 3.14044 Item Value Threshold Converged? Maximum Force 0.002843 0.000450 NO RMS Force 0.001859 0.000300 NO Maximum Displacement 0.011724 0.001800 NO RMS Displacement 0.009020 0.001200 NO Predicted change in Energy=-6.098160D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 1.270917 -4.278613 0.019326 2 1 0 2.463053 -4.277949 0.061398 3 1 0 0.675555 -3.245396 -0.001056 4 1 0 0.675014 -5.311444 -0.001144 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.192879 0.000000 3 H 1.192648 2.065240 0.000000 4 H 1.192585 2.066182 2.066048 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -0.000173 0.000022 -0.000148 2 1 0 0.663593 -0.991126 0.000247 3 1 0 0.527433 1.069620 0.000247 4 1 0 -1.190163 -0.078603 0.000248 --------------------------------------------------------------------- Rotational constants (GHZ): 235.1381902 234.8701865 117.5020763 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 7.4236529570 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.55D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "\\icnas3.cc.ic.ac.uk\yz13712\Desktop\3rdyearlab\ZYT_bh3_opt C1 631g.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.994741 0.000000 0.000000 -0.102424 Ang= 11.76 deg. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -26.6153232893 A.U. after 7 cycles NFock= 7 Conv=0.29D-09 -V/T= 2.0113 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 0.000164314 0.000100788 0.000096755 2 1 -0.000253592 -0.000062495 -0.000039225 3 1 0.000019770 -0.000160234 -0.000029643 4 1 0.000069508 0.000121941 -0.000027887 ------------------------------------------------------------------- Cartesian Forces: Max 0.000253592 RMS 0.000116796 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000254853 RMS 0.000132788 Search for a local minimum. Step number 7 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 3 5 4 6 7 DE= -5.68D-05 DEPred=-6.10D-05 R= 9.32D-01 TightC=F SS= 1.41D+00 RLast= 3.08D-02 DXNew= 4.2426D-01 9.2460D-02 Trust test= 9.32D-01 RLast= 3.08D-02 DXMaxT set to 2.52D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.16477 R2 0.04898 0.16001 R3 0.04877 0.04649 0.15962 A1 -0.00055 -0.00092 -0.00091 0.12885 A2 0.00130 0.00098 0.00098 -0.02166 0.14824 A3 0.00118 0.00087 0.00087 -0.02175 -0.01182 D1 -0.00129 0.00071 0.00066 -0.00105 0.00152 A3 D1 A3 0.14812 D1 0.00145 0.05143 ITU= 1 0 -1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.05135 0.11333 0.11341 0.16000 0.16027 Eigenvalues --- 0.25778 RFO step: Lambda=-1.41249676D-07 EMin= 5.13507424D-02 Quartic linear search produced a step of -0.05980. Iteration 1 RMS(Cart)= 0.00059774 RMS(Int)= 0.00000303 Iteration 2 RMS(Cart)= 0.00000018 RMS(Int)= 0.00000302 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.25421 -0.00025 -0.00072 -0.00059 -0.00130 2.25291 R2 2.25378 -0.00015 -0.00067 0.00024 -0.00043 2.25335 R3 2.25366 -0.00014 -0.00066 0.00030 -0.00036 2.25330 A1 2.09324 0.00009 0.00000 0.00059 0.00059 2.09383 A2 2.09492 -0.00005 -0.00001 -0.00028 -0.00028 2.09463 A3 2.09503 -0.00005 0.00000 -0.00031 -0.00031 2.09472 D1 3.14044 0.00006 0.00141 -0.00022 0.00119 -3.14155 Item Value Threshold Converged? Maximum Force 0.000255 0.000450 YES RMS Force 0.000133 0.000300 YES Maximum Displacement 0.000920 0.001800 YES RMS Displacement 0.000598 0.001200 YES Predicted change in Energy=-2.976455D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.1929 -DE/DX = -0.0003 ! ! R2 R(1,3) 1.1926 -DE/DX = -0.0001 ! ! R3 R(1,4) 1.1926 -DE/DX = -0.0001 ! ! A1 A(2,1,3) 119.934 -DE/DX = 0.0001 ! ! A2 A(2,1,4) 120.0298 -DE/DX = 0.0 ! ! A3 A(3,1,4) 120.0361 -DE/DX = 0.0 ! ! D1 D(2,1,4,3) -180.0659 -DE/DX = 0.0001 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 1.270917 -4.278613 0.019326 2 1 0 2.463053 -4.277949 0.061398 3 1 0 0.675555 -3.245396 -0.001056 4 1 0 0.675014 -5.311444 -0.001144 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.192879 0.000000 3 H 1.192648 2.065240 0.000000 4 H 1.192585 2.066182 2.066048 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -0.000173 0.000022 -0.000148 2 1 0 0.663593 -0.991126 0.000247 3 1 0 0.527433 1.069620 0.000247 4 1 0 -1.190163 -0.078603 0.000248 --------------------------------------------------------------------- Rotational constants (GHZ): 235.1381902 234.8701865 117.5020763 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -6.77152 -0.51248 -0.35085 -0.35066 Alpha virt. eigenvalues -- -0.06607 0.16822 0.17909 0.17931 0.38116 Alpha virt. eigenvalues -- 0.38123 0.44410 0.47394 0.90292 0.90332 Alpha virt. eigenvalues -- 0.91275 1.17078 1.17093 1.57572 1.61988 Alpha virt. eigenvalues -- 1.62057 2.00619 2.21172 2.39165 2.39228 Alpha virt. eigenvalues -- 2.55111 2.55186 3.00100 3.24376 3.24428 Alpha virt. eigenvalues -- 3.46299 Condensed to atoms (all electrons): 1 2 3 4 1 B 3.673139 0.410726 0.410751 0.410768 2 H 0.410726 0.671688 -0.025455 -0.025386 3 H 0.410751 -0.025455 0.671630 -0.025388 4 H 0.410768 -0.025386 -0.025388 0.671509 Mulliken charges: 1 1 B 0.094615 2 H -0.031574 3 H -0.031538 4 H -0.031503 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 B 0.000000 Electronic spatial extent (au): = 33.8383 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0007 Y= 0.0002 Z= -0.0009 Tot= 0.0012 Quadrupole moment (field-independent basis, Debye-Ang): XX= -9.0171 YY= -9.0196 ZZ= -6.9788 XY= 0.0003 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.6786 YY= -0.6811 ZZ= 1.3597 XY= 0.0003 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.1124 YYY= 0.0231 ZZZ= -0.0012 XYY= 0.1114 XXY= -0.0221 XXZ= 0.0002 XZZ= -0.0005 YZZ= 0.0003 YYZ= 0.0002 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -22.5490 YYYY= -22.5449 ZZZZ= -6.6247 XXXY= 0.0007 XXXZ= -0.0003 YYYX= 0.0008 YYYZ= 0.0001 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -7.5148 XXZZ= -5.0939 YYZZ= -5.0925 XXYZ= -0.0001 YYXZ= 0.0003 ZZXY= 0.0002 N-N= 7.423652956984D+00 E-N=-7.541912349182D+01 KE= 2.631678033181D+01 1|1| IMPERIAL COLLEGE-CHWS-275|FOpt|RB3LYP|6-31G(d,p)|B1H3|YZ13712|03- Feb-2015|0||# opt b3lyp/6-31g(d,p) geom=connectivity scf=conver=9 inte gral=grid=ultrafine||BH3 optimization||0,1|B,1.2709172856,-4.278613306 4,0.0193261833|H,2.4630534848,-4.2779485834,0.0613983549|H,0.675555403 6,-3.2453957949,-0.0010561804|H,0.675013966,-5.3114441253,-0.001144487 8||Version=EM64W-G09RevD.01|State=1-A|HF=-26.6153233|RMSD=2.857e-010|R MSF=1.168e-004|Dipole=-0.0002281,-0.0001931,-0.0003632|Quadrupole=-0.5 041879,-0.5048688,1.0090567,0.0007803,-0.0529661,-0.0000235|PG=C01 [X( B1H3)]||@ WE HAVE SEEN THAT MAN ON THE AVERAGE DOES NOT LIVE ABOVE TWO-AND-TWENTY YEARS. DURING THESE TWO AND TWENTY YEARS HE IS LIABLE TO TWO AND TWENTY THOUSAND EVILS, MANY OF WHICH ARE INCURABLE. YET EVEN IN THIS DREADFUL STATE MEN STILL STRUT AND POSE ON THE STAGE OF LIFE. THEY MAKE LOVE AT THE RISK OF DESTRUCTION, INTRIGUE, CARRY ON WAR, AND FORM PROJECTS, JUST AS IF THEY WERE TO LIVE IN LUXURY AND HAPPINESS FOR A THOUSAND AGES. -- VOLTAIRE Job cpu time: 0 days 0 hours 0 minutes 30.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Feb 03 14:03:14 2015.