Entering Gaussian System, Link 0=/Applications/gaussian09/g09/g09 Initial command: /Applications/gaussian09/g09/l1.exe "/Users/yf1411/Documents/Aromatciity/Pyridinium/Gau-2633.inp" -scrdir="/Users/yf1411/Documents/Aromatciity/Pyridinium/" Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = /Applications/gaussian09/g09/l1.exe PID= 2657. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64M-G09RevD.01 24-Apr-2013 29-Jan-2014 ****************************************** %chk=Pyridinium_OPT.chk ---------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity ---------------------------------------- 1/14=-1,18=20,19=15,26=3,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------------ Pyridinium- Optimisation ------------------------ Symbolic Z-matrix: Charge = 1 Multiplicity = 1 C -0.71661 1.21178 -0.00001 C -1.41555 0.00014 -0.00002 C -0.71687 -1.21164 0.00001 C 0.66683 -1.19027 0. C 0.66706 1.19015 0.00002 H -1.23405 2.16377 0. H -2.50075 0.00027 0.00001 H -1.23446 -2.16354 0.00003 H 1.28527 -2.07961 0.00001 H 2.32595 -0.00024 -0.00001 H 1.28572 2.07934 0.00002 N 1.30903 -0.00014 -0.00001 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3988 estimate D2E/DX2 ! ! R2 R(1,5) 1.3838 estimate D2E/DX2 ! ! R3 R(1,6) 1.0835 estimate D2E/DX2 ! ! R4 R(2,3) 1.3988 estimate D2E/DX2 ! ! R5 R(2,7) 1.0852 estimate D2E/DX2 ! ! R6 R(3,4) 1.3839 estimate D2E/DX2 ! ! R7 R(3,8) 1.0835 estimate D2E/DX2 ! ! R8 R(4,9) 1.0832 estimate D2E/DX2 ! ! R9 R(4,12) 1.3523 estimate D2E/DX2 ! ! R10 R(5,11) 1.0832 estimate D2E/DX2 ! ! R11 R(5,12) 1.3524 estimate D2E/DX2 ! ! R12 R(10,12) 1.0169 estimate D2E/DX2 ! ! A1 A(2,1,5) 119.0827 estimate D2E/DX2 ! ! A2 A(2,1,6) 121.496 estimate D2E/DX2 ! ! A3 A(5,1,6) 119.4213 estimate D2E/DX2 ! ! A4 A(1,2,3) 120.0549 estimate D2E/DX2 ! ! A5 A(1,2,7) 119.9711 estimate D2E/DX2 ! ! A6 A(3,2,7) 119.974 estimate D2E/DX2 ! ! A7 A(2,3,4) 119.0819 estimate D2E/DX2 ! ! A8 A(2,3,8) 121.4988 estimate D2E/DX2 ! ! A9 A(4,3,8) 119.4193 estimate D2E/DX2 ! ! A10 A(3,4,9) 123.9297 estimate D2E/DX2 ! ! A11 A(3,4,12) 119.2363 estimate D2E/DX2 ! ! A12 A(9,4,12) 116.834 estimate D2E/DX2 ! ! A13 A(1,5,11) 123.9327 estimate D2E/DX2 ! ! A14 A(1,5,12) 119.2354 estimate D2E/DX2 ! ! A15 A(11,5,12) 116.8319 estimate D2E/DX2 ! ! A16 A(4,12,5) 123.3088 estimate D2E/DX2 ! ! A17 A(4,12,10) 118.3462 estimate D2E/DX2 ! ! A18 A(5,12,10) 118.345 estimate D2E/DX2 ! ! D1 D(5,1,2,3) 0.0006 estimate D2E/DX2 ! ! D2 D(5,1,2,7) 179.9977 estimate D2E/DX2 ! ! D3 D(6,1,2,3) -179.9984 estimate D2E/DX2 ! ! D4 D(6,1,2,7) -0.0013 estimate D2E/DX2 ! ! D5 D(2,1,5,11) 179.9995 estimate D2E/DX2 ! ! D6 D(2,1,5,12) 0.0021 estimate D2E/DX2 ! ! D7 D(6,1,5,11) -0.0014 estimate D2E/DX2 ! ! D8 D(6,1,5,12) -179.9989 estimate D2E/DX2 ! ! D9 D(1,2,3,4) -0.0024 estimate D2E/DX2 ! ! D10 D(1,2,3,8) 179.9983 estimate D2E/DX2 ! ! D11 D(7,2,3,4) -179.9995 estimate D2E/DX2 ! ! D12 D(7,2,3,8) 0.0012 estimate D2E/DX2 ! ! D13 D(2,3,4,9) -179.9997 estimate D2E/DX2 ! ! D14 D(2,3,4,12) 0.0015 estimate D2E/DX2 ! ! D15 D(8,3,4,9) -0.0004 estimate D2E/DX2 ! ! D16 D(8,3,4,12) -179.9992 estimate D2E/DX2 ! ! D17 D(3,4,12,5) 0.0013 estimate D2E/DX2 ! ! D18 D(3,4,12,10) 179.999 estimate D2E/DX2 ! ! D19 D(9,4,12,5) -179.9975 estimate D2E/DX2 ! ! D20 D(9,4,12,10) 0.0001 estimate D2E/DX2 ! ! D21 D(1,5,12,4) -0.0031 estimate D2E/DX2 ! ! D22 D(1,5,12,10) 179.9992 estimate D2E/DX2 ! ! D23 D(11,5,12,4) 179.9992 estimate D2E/DX2 ! ! D24 D(11,5,12,10) 0.0016 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 64 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.716610 1.211783 -0.000005 2 6 0 -1.415548 0.000135 -0.000015 3 6 0 -0.716873 -1.211635 0.000011 4 6 0 0.666826 -1.190268 -0.000004 5 6 0 0.667060 1.190149 0.000018 6 1 0 -1.234046 2.163768 0.000001 7 1 0 -2.500752 0.000274 0.000005 8 1 0 -1.234458 -2.163538 0.000032 9 1 0 1.285270 -2.079615 0.000010 10 1 0 2.325947 -0.000235 -0.000008 11 1 0 1.285721 2.079343 0.000020 12 7 0 1.309027 -0.000140 -0.000013 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.398787 0.000000 3 C 2.423418 1.398761 0.000000 4 C 2.771957 2.398612 1.383864 0.000000 5 C 1.383839 2.398622 2.771973 2.380417 0.000000 6 H 1.083520 2.171233 3.414793 3.855240 2.135916 7 H 2.156598 1.085204 2.156606 3.383924 3.383908 8 H 3.414815 2.171238 1.083519 2.135916 3.855254 9 H 3.852379 3.408780 2.182193 1.083241 3.327693 10 H 3.275079 3.741495 3.275094 2.041779 2.041793 11 H 2.182198 3.408806 3.852391 3.327670 1.083239 12 N 2.360501 2.724575 2.360507 1.352341 1.352372 6 7 8 9 10 6 H 0.000000 7 H 2.507040 0.000000 8 H 4.327306 2.507106 0.000000 9 H 4.934901 4.319711 2.521125 0.000000 10 H 4.166108 4.826699 4.166097 2.325259 0.000000 11 H 2.521181 4.319711 4.934910 4.158958 2.325234 12 N 3.339119 3.809779 3.339103 2.079611 1.016920 11 12 11 H 0.000000 12 N 2.079614 0.000000 Stoichiometry C5H6N(1+) Framework group C1[X(C5H6N)] Deg. of freedom 30 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.716603 1.211787 -0.000005 2 6 0 -1.415548 0.000143 -0.000015 3 6 0 -0.716880 -1.211631 0.000011 4 6 0 0.666819 -1.190272 -0.000004 5 6 0 0.667066 1.190145 0.000018 6 1 0 -1.234034 2.163775 0.000001 7 1 0 -2.500752 0.000288 0.000005 8 1 0 -1.234470 -2.163531 0.000032 9 1 0 1.285259 -2.079622 0.000010 10 1 0 2.325947 -0.000248 -0.000008 11 1 0 1.285732 2.079336 0.000020 12 7 0 1.309027 -0.000147 -0.000013 --------------------------------------------------------------------- Rotational constants (GHZ): 5.7831471 5.6655885 2.8618821 Standard basis: 6-31G(d,p) (6D, 7F) There are 120 symmetry adapted cartesian basis functions of A symmetry. There are 120 symmetry adapted basis functions of A symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 215.9891522892 Hartrees. NAtoms= 12 NActive= 12 NUniq= 12 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 7.63D-04 NBF= 120 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 120 ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=27364700. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -248.668073955 A.U. after 14 cycles NFock= 14 Conv=0.26D-08 -V/T= 2.0101 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -14.63690 -10.45806 -10.45805 -10.41808 -10.40823 Alpha occ. eigenvalues -- -10.40821 -1.21401 -1.02629 -0.99321 -0.86406 Alpha occ. eigenvalues -- -0.85982 -0.79011 -0.70595 -0.69953 -0.66589 Alpha occ. eigenvalues -- -0.65084 -0.64064 -0.57741 -0.57432 -0.50847 Alpha occ. eigenvalues -- -0.47885 Alpha virt. eigenvalues -- -0.25840 -0.22034 -0.12817 -0.07317 -0.05981 Alpha virt. eigenvalues -- -0.04343 -0.03530 -0.00495 0.01202 0.06133 Alpha virt. eigenvalues -- 0.08176 0.09928 0.10519 0.22787 0.25359 Alpha virt. eigenvalues -- 0.31050 0.32158 0.34488 0.36223 0.38381 Alpha virt. eigenvalues -- 0.38783 0.39753 0.40259 0.41020 0.43118 Alpha virt. eigenvalues -- 0.45704 0.49004 0.59052 0.60566 0.61128 Alpha virt. eigenvalues -- 0.62264 0.63204 0.64882 0.70355 0.71890 Alpha virt. eigenvalues -- 0.76126 0.78772 0.86487 0.90184 0.94544 Alpha virt. eigenvalues -- 0.96118 1.01904 1.05306 1.05611 1.17129 Alpha virt. eigenvalues -- 1.17287 1.19577 1.19721 1.22931 1.27448 Alpha virt. eigenvalues -- 1.49187 1.52415 1.55292 1.67951 1.68150 Alpha virt. eigenvalues -- 1.74586 1.75805 1.76372 1.76525 1.77668 Alpha virt. eigenvalues -- 1.81694 1.87605 1.91155 2.06880 2.08227 Alpha virt. eigenvalues -- 2.13626 2.15861 2.16481 2.19605 2.20169 Alpha virt. eigenvalues -- 2.20806 2.22534 2.22918 2.26427 2.26484 Alpha virt. eigenvalues -- 2.27926 2.36167 2.39381 2.39826 2.45312 Alpha virt. eigenvalues -- 2.57583 2.60423 2.61724 2.83166 2.85817 Alpha virt. eigenvalues -- 2.90802 3.03108 3.03178 3.04327 3.17194 Alpha virt. eigenvalues -- 3.28349 3.32199 3.75443 3.86417 3.94838 Alpha virt. eigenvalues -- 3.98241 4.13670 4.22308 4.57602 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.781385 0.514052 -0.018871 -0.035855 0.544360 0.384673 2 C 0.514052 4.757839 0.514071 -0.034410 -0.034409 -0.026767 3 C -0.018871 0.514071 4.781386 0.544338 -0.035856 0.003882 4 C -0.035855 -0.034410 0.544338 4.712268 -0.053546 0.000292 5 C 0.544360 -0.034409 -0.035856 -0.053546 4.712269 -0.034469 6 H 0.384673 -0.026767 0.003882 0.000292 -0.034469 0.487336 7 H -0.034063 0.381155 -0.034062 0.004484 0.004484 -0.004563 8 H 0.003882 -0.026766 0.384673 -0.034469 0.000292 -0.000109 9 H 0.000146 0.003233 -0.024924 0.382042 0.003085 0.000009 10 H 0.003910 -0.000052 0.003910 -0.027776 -0.027775 -0.000105 11 H -0.024922 0.003233 0.000146 0.003086 0.382043 -0.003081 12 N -0.013241 -0.042671 -0.013240 0.360890 0.360875 0.003386 7 8 9 10 11 12 1 C -0.034063 0.003882 0.000146 0.003910 -0.024922 -0.013241 2 C 0.381155 -0.026766 0.003233 -0.000052 0.003233 -0.042671 3 C -0.034062 0.384673 -0.024924 0.003910 0.000146 -0.013240 4 C 0.004484 -0.034469 0.382042 -0.027776 0.003086 0.360890 5 C 0.004484 0.000292 0.003085 -0.027775 0.382043 0.360875 6 H -0.004563 -0.000109 0.000009 -0.000105 -0.003081 0.003386 7 H 0.496697 -0.004562 -0.000107 0.000013 -0.000107 -0.000012 8 H -0.004562 0.487336 -0.003081 -0.000105 0.000009 0.003386 9 H -0.000107 -0.003081 0.473717 -0.004808 -0.000135 -0.040609 10 H 0.000013 -0.000105 -0.004808 0.358385 -0.004808 0.357162 11 H -0.000107 0.000009 -0.000135 -0.004808 0.473718 -0.040610 12 N -0.000012 0.003386 -0.040609 0.357162 -0.040610 6.537152 Mulliken charges: 1 1 C -0.105456 2 C -0.008508 3 C -0.105453 4 C 0.178657 5 C 0.178648 6 H 0.189515 7 H 0.190644 8 H 0.189515 9 H 0.211430 10 H 0.342049 11 H 0.211428 12 N -0.472467 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.084059 2 C 0.182135 3 C 0.084062 4 C 0.390087 5 C 0.390076 12 N -0.130418 Electronic spatial extent (au): = 433.1657 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 1.8727 Y= -0.0003 Z= 0.0000 Tot= 1.8727 Quadrupole moment (field-independent basis, Debye-Ang): XX= -16.7625 YY= -20.5248 ZZ= -35.4045 XY= -0.0005 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 7.4681 YY= 3.7058 ZZ= -11.1739 XY= -0.0005 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 13.2129 YYY= -0.0016 ZZZ= 0.0000 XYY= 2.8394 XXY= -0.0003 XXZ= 0.0001 XZZ= 1.7584 YZZ= -0.0003 YYZ= 0.0003 XYZ= 0.0001 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -173.6004 YYYY= -204.3919 ZZZZ= -34.0055 XXXY= -0.0029 XXXZ= -0.0004 YYYX= -0.0014 YYYZ= -0.0003 ZZZX= -0.0001 ZZZY= 0.0000 XXYY= -64.6983 XXZZ= -51.4852 YYZZ= -53.7606 XXYZ= -0.0001 YYXZ= -0.0001 ZZXY= -0.0004 N-N= 2.159891522892D+02 E-N=-9.985015197654D+02 KE= 2.461911203990D+02 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000044941 -0.000027624 0.000001168 2 6 0.000026366 0.000011871 0.000004372 3 6 0.000066353 0.000018545 -0.000002298 4 6 -0.000084453 -0.000026761 0.000001058 5 6 -0.000063266 0.000008739 -0.000005434 6 1 -0.000053470 -0.000013188 -0.000000075 7 1 -0.000027365 -0.000002159 -0.000001649 8 1 -0.000056926 0.000014460 -0.000000245 9 1 0.000018563 0.000011699 -0.000000785 10 1 -0.000042383 -0.000000881 -0.000000287 11 1 0.000015936 -0.000009013 0.000000731 12 7 0.000155704 0.000014313 0.000003444 ------------------------------------------------------------------- Cartesian Forces: Max 0.000155704 RMS 0.000038967 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000064771 RMS 0.000023199 Search for a local minimum. Step number 1 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.02105 0.02146 0.02193 0.02211 0.02267 Eigenvalues --- 0.02310 0.02312 0.02317 0.02322 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.35373 0.35572 Eigenvalues --- 0.35572 0.35606 0.35606 0.42874 0.43379 Eigenvalues --- 0.44833 0.46626 0.48404 0.52236 0.53992 RFO step: Lambda=-1.29967403D-07 EMin= 2.10497075D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00015963 RMS(Int)= 0.00000003 Iteration 2 RMS(Cart)= 0.00000003 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.64332 -0.00005 0.00000 -0.00011 -0.00011 2.64321 R2 2.61508 0.00001 0.00000 0.00001 0.00001 2.61509 R3 2.04756 0.00001 0.00000 0.00004 0.00004 2.04760 R4 2.64328 -0.00004 0.00000 -0.00009 -0.00009 2.64319 R5 2.05074 0.00003 0.00000 0.00008 0.00008 2.05082 R6 2.61512 -0.00001 0.00000 -0.00001 -0.00001 2.61511 R7 2.04755 0.00001 0.00000 0.00004 0.00004 2.04760 R8 2.04703 0.00000 0.00000 0.00000 0.00000 2.04703 R9 2.55555 0.00005 0.00000 0.00010 0.00010 2.55566 R10 2.04703 0.00000 0.00000 0.00000 0.00000 2.04703 R11 2.55561 0.00004 0.00000 0.00007 0.00007 2.55569 R12 1.92170 -0.00004 0.00000 -0.00009 -0.00009 1.92161 A1 2.07839 0.00001 0.00000 0.00003 0.00003 2.07842 A2 2.12050 -0.00006 0.00000 -0.00036 -0.00036 2.12015 A3 2.08430 0.00005 0.00000 0.00033 0.00033 2.08462 A4 2.09535 0.00001 0.00000 -0.00001 -0.00001 2.09534 A5 2.09389 0.00000 0.00000 0.00002 0.00002 2.09391 A6 2.09394 -0.00001 0.00000 -0.00001 -0.00001 2.09393 A7 2.07837 0.00001 0.00000 0.00004 0.00004 2.07841 A8 2.12055 -0.00006 0.00000 -0.00038 -0.00038 2.12017 A9 2.08426 0.00005 0.00000 0.00035 0.00035 2.08460 A10 2.16298 0.00002 0.00000 0.00011 0.00011 2.16309 A11 2.08107 0.00001 0.00000 0.00006 0.00006 2.08112 A12 2.03914 -0.00003 0.00000 -0.00017 -0.00017 2.03897 A13 2.16303 0.00001 0.00000 0.00008 0.00008 2.16312 A14 2.08105 0.00001 0.00000 0.00006 0.00006 2.08111 A15 2.03910 -0.00002 0.00000 -0.00015 -0.00015 2.03895 A16 2.15214 -0.00005 0.00000 -0.00017 -0.00017 2.15197 A17 2.06553 0.00002 0.00000 0.00008 0.00008 2.06561 A18 2.06551 0.00002 0.00000 0.00009 0.00009 2.06560 D1 0.00001 0.00000 0.00000 -0.00001 -0.00001 0.00000 D2 3.14155 0.00000 0.00000 0.00006 0.00006 -3.14158 D3 -3.14156 0.00000 0.00000 -0.00004 -0.00004 3.14158 D4 -0.00002 0.00000 0.00000 0.00004 0.00004 0.00001 D5 3.14158 0.00000 0.00000 0.00001 0.00001 -3.14159 D6 0.00004 0.00000 0.00000 -0.00005 -0.00005 -0.00001 D7 -0.00002 0.00000 0.00000 0.00003 0.00003 0.00001 D8 -3.14157 0.00000 0.00000 -0.00003 -0.00003 3.14159 D9 -0.00004 0.00000 0.00000 0.00006 0.00006 0.00001 D10 3.14156 0.00000 0.00000 0.00004 0.00004 -3.14158 D11 -3.14158 0.00000 0.00000 -0.00001 -0.00001 3.14159 D12 0.00002 0.00000 0.00000 -0.00003 -0.00003 -0.00001 D13 -3.14159 0.00000 0.00000 -0.00001 -0.00001 3.14159 D14 0.00003 0.00000 0.00000 -0.00004 -0.00004 -0.00001 D15 -0.00001 0.00000 0.00000 0.00001 0.00001 0.00000 D16 -3.14158 0.00000 0.00000 -0.00002 -0.00002 3.14159 D17 0.00002 0.00000 0.00000 -0.00002 -0.00002 0.00000 D18 3.14157 0.00000 0.00000 0.00002 0.00002 -3.14159 D19 -3.14155 0.00000 0.00000 -0.00005 -0.00005 3.14158 D20 0.00000 0.00000 0.00000 -0.00001 -0.00001 -0.00001 D21 -0.00005 0.00000 0.00000 0.00007 0.00007 0.00001 D22 3.14158 0.00000 0.00000 0.00002 0.00002 -3.14158 D23 3.14158 0.00000 0.00000 0.00002 0.00002 -3.14159 D24 0.00003 0.00000 0.00000 -0.00003 -0.00003 0.00000 Item Value Threshold Converged? Maximum Force 0.000065 0.000450 YES RMS Force 0.000023 0.000300 YES Maximum Displacement 0.000627 0.001800 YES RMS Displacement 0.000160 0.001200 YES Predicted change in Energy=-6.498357D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3988 -DE/DX = 0.0 ! ! R2 R(1,5) 1.3838 -DE/DX = 0.0 ! ! R3 R(1,6) 1.0835 -DE/DX = 0.0 ! ! R4 R(2,3) 1.3988 -DE/DX = 0.0 ! ! R5 R(2,7) 1.0852 -DE/DX = 0.0 ! ! R6 R(3,4) 1.3839 -DE/DX = 0.0 ! ! R7 R(3,8) 1.0835 -DE/DX = 0.0 ! ! R8 R(4,9) 1.0832 -DE/DX = 0.0 ! ! R9 R(4,12) 1.3523 -DE/DX = 0.0001 ! ! R10 R(5,11) 1.0832 -DE/DX = 0.0 ! ! R11 R(5,12) 1.3524 -DE/DX = 0.0 ! ! R12 R(10,12) 1.0169 -DE/DX = 0.0 ! ! A1 A(2,1,5) 119.0827 -DE/DX = 0.0 ! ! A2 A(2,1,6) 121.496 -DE/DX = -0.0001 ! ! A3 A(5,1,6) 119.4213 -DE/DX = 0.0 ! ! A4 A(1,2,3) 120.0549 -DE/DX = 0.0 ! ! A5 A(1,2,7) 119.9711 -DE/DX = 0.0 ! ! A6 A(3,2,7) 119.974 -DE/DX = 0.0 ! ! A7 A(2,3,4) 119.0819 -DE/DX = 0.0 ! ! A8 A(2,3,8) 121.4988 -DE/DX = -0.0001 ! ! A9 A(4,3,8) 119.4193 -DE/DX = 0.0001 ! ! A10 A(3,4,9) 123.9297 -DE/DX = 0.0 ! ! A11 A(3,4,12) 119.2363 -DE/DX = 0.0 ! ! A12 A(9,4,12) 116.834 -DE/DX = 0.0 ! ! A13 A(1,5,11) 123.9327 -DE/DX = 0.0 ! ! A14 A(1,5,12) 119.2354 -DE/DX = 0.0 ! ! A15 A(11,5,12) 116.8319 -DE/DX = 0.0 ! ! A16 A(4,12,5) 123.3088 -DE/DX = 0.0 ! ! A17 A(4,12,10) 118.3462 -DE/DX = 0.0 ! ! A18 A(5,12,10) 118.345 -DE/DX = 0.0 ! ! D1 D(5,1,2,3) 0.0006 -DE/DX = 0.0 ! ! D2 D(5,1,2,7) -180.0023 -DE/DX = 0.0 ! ! D3 D(6,1,2,3) 180.0016 -DE/DX = 0.0 ! ! D4 D(6,1,2,7) -0.0013 -DE/DX = 0.0 ! ! D5 D(2,1,5,11) -180.0005 -DE/DX = 0.0 ! ! D6 D(2,1,5,12) 0.0021 -DE/DX = 0.0 ! ! D7 D(6,1,5,11) -0.0014 -DE/DX = 0.0 ! ! D8 D(6,1,5,12) 180.0011 -DE/DX = 0.0 ! ! D9 D(1,2,3,4) -0.0024 -DE/DX = 0.0 ! ! D10 D(1,2,3,8) -180.0017 -DE/DX = 0.0 ! ! D11 D(7,2,3,4) 180.0005 -DE/DX = 0.0 ! ! D12 D(7,2,3,8) 0.0012 -DE/DX = 0.0 ! ! D13 D(2,3,4,9) 180.0003 -DE/DX = 0.0 ! ! D14 D(2,3,4,12) 0.0015 -DE/DX = 0.0 ! ! D15 D(8,3,4,9) -0.0004 -DE/DX = 0.0 ! ! D16 D(8,3,4,12) 180.0008 -DE/DX = 0.0 ! ! D17 D(3,4,12,5) 0.0013 -DE/DX = 0.0 ! ! D18 D(3,4,12,10) -180.001 -DE/DX = 0.0 ! ! D19 D(9,4,12,5) 180.0025 -DE/DX = 0.0 ! ! D20 D(9,4,12,10) 0.0001 -DE/DX = 0.0 ! ! D21 D(1,5,12,4) -0.0031 -DE/DX = 0.0 ! ! D22 D(1,5,12,10) -180.0008 -DE/DX = 0.0 ! ! D23 D(11,5,12,4) -180.0008 -DE/DX = 0.0 ! ! D24 D(11,5,12,10) 0.0016 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.716610 1.211783 -0.000005 2 6 0 -1.415548 0.000135 -0.000015 3 6 0 -0.716873 -1.211635 0.000011 4 6 0 0.666826 -1.190268 -0.000004 5 6 0 0.667060 1.190149 0.000018 6 1 0 -1.234046 2.163768 0.000001 7 1 0 -2.500752 0.000274 0.000005 8 1 0 -1.234458 -2.163538 0.000032 9 1 0 1.285270 -2.079615 0.000010 10 1 0 2.325947 -0.000235 -0.000008 11 1 0 1.285721 2.079343 0.000020 12 7 0 1.309027 -0.000140 -0.000013 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.398787 0.000000 3 C 2.423418 1.398761 0.000000 4 C 2.771957 2.398612 1.383864 0.000000 5 C 1.383839 2.398622 2.771973 2.380417 0.000000 6 H 1.083520 2.171233 3.414793 3.855240 2.135916 7 H 2.156598 1.085204 2.156606 3.383924 3.383908 8 H 3.414815 2.171238 1.083519 2.135916 3.855254 9 H 3.852379 3.408780 2.182193 1.083241 3.327693 10 H 3.275079 3.741495 3.275094 2.041779 2.041793 11 H 2.182198 3.408806 3.852391 3.327670 1.083239 12 N 2.360501 2.724575 2.360507 1.352341 1.352372 6 7 8 9 10 6 H 0.000000 7 H 2.507040 0.000000 8 H 4.327306 2.507106 0.000000 9 H 4.934901 4.319711 2.521125 0.000000 10 H 4.166108 4.826699 4.166097 2.325259 0.000000 11 H 2.521181 4.319711 4.934910 4.158958 2.325234 12 N 3.339119 3.809779 3.339103 2.079611 1.016920 11 12 11 H 0.000000 12 N 2.079614 0.000000 Stoichiometry C5H6N(1+) Framework group C1[X(C5H6N)] Deg. of freedom 30 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.716603 1.211787 -0.000005 2 6 0 -1.415548 0.000143 -0.000015 3 6 0 -0.716880 -1.211631 0.000011 4 6 0 0.666819 -1.190272 -0.000004 5 6 0 0.667066 1.190145 0.000018 6 1 0 -1.234034 2.163775 0.000001 7 1 0 -2.500752 0.000288 0.000005 8 1 0 -1.234470 -2.163531 0.000032 9 1 0 1.285259 -2.079622 0.000010 10 1 0 2.325947 -0.000248 -0.000008 11 1 0 1.285732 2.079336 0.000020 12 7 0 1.309027 -0.000147 -0.000013 --------------------------------------------------------------------- Rotational constants (GHZ): 5.7831471 5.6655885 2.8618821 1\1\GINC-CH-MACTEACH02\FOpt\RB3LYP\6-31G(d,p)\C5H6N1(1+)\YF1411\29-Jan -2014\0\\# opt b3lyp/6-31g(d,p) geom=connectivity\\Pyridinium- Optimis ation\\1,1\C,-0.71661,1.211783,-0.000005\C,-1.415548,0.000135,-0.00001 5\C,-0.716873,-1.211635,0.000011\C,0.666826,-1.190268,-0.000004\C,0.66 706,1.190149,0.000018\H,-1.234046,2.163768,0.000001\H,-2.500752,0.0002 74,0.000005\H,-1.234458,-2.163538,0.000032\H,1.28527,-2.079615,0.00001 \H,2.325947,-0.000235,-0.000008\H,1.285721,2.079343,0.00002\N,1.309027 ,-0.00014,-0.000013\\Version=EM64M-G09RevD.01\State=1-A\HF=-248.668074 \RMSD=2.570e-09\RMSF=3.897e-05\Dipole=0.7367864,-0.0000951,0.0000181\Q uadrupole=5.5523472,2.7551701,-8.3075174,-0.0003566,-0.0000146,-0.0000 252\PG=C01 [X(C5H6N1)]\\@ A FOOL CAN ASK MORE QUESTIONS THAN A WISE MAN CAN ANSWER. Job cpu time: 0 days 0 hours 0 minutes 50.1 seconds. File lengths (MBytes): RWF= 8 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Wed Jan 29 10:45:13 2014.