Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_c01/g09/l1.exe /home/scan-user-1/run/66673/Gau-868.inp -scrdir=/home/scan-user-1/run/66673/ Entering Link 1 = /apps/gaussian/g09_c01/g09/l1.exe PID= 869. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2011, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevC.01 23-Sep-2011 22-Nov-2012 ****************************************** %nprocshared=4 Will use up to 4 processors via shared memory. %mem=7000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.2974715.cx1b/rwf ---------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity ---------------------------------------- 1/14=-1,18=20,19=15,26=3,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Charge = -1 Multiplicity = 1 Symbolic Z-Matrix: C -1.21944 0.67703 -0.00002 C 0. 1.37521 -0.00001 C 1.21944 0.67703 -0.00002 C 1.27768 -0.72057 -0.00003 C -1.27768 -0.72057 -0.00003 H -2.14197 1.27041 0.00008 H 0. 2.46672 0.00011 H 2.14197 1.27041 0.00008 H 2.2826 -1.16007 0.00008 H 0. -2.75137 0.00008 H -2.2826 -1.16007 0.00008 B 0. -1.53296 0.00001 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4052 estimate D2E/DX2 ! ! R2 R(1,5) 1.3988 estimate D2E/DX2 ! ! R3 R(1,6) 1.0969 estimate D2E/DX2 ! ! R4 R(2,3) 1.4052 estimate D2E/DX2 ! ! R5 R(2,7) 1.0915 estimate D2E/DX2 ! ! R6 R(3,4) 1.3988 estimate D2E/DX2 ! ! R7 R(3,8) 1.0969 estimate D2E/DX2 ! ! R8 R(4,9) 1.0968 estimate D2E/DX2 ! ! R9 R(4,12) 1.5141 estimate D2E/DX2 ! ! R10 R(5,11) 1.0968 estimate D2E/DX2 ! ! R11 R(5,12) 1.5141 estimate D2E/DX2 ! ! R12 R(10,12) 1.2184 estimate D2E/DX2 ! ! A1 A(2,1,5) 122.1792 estimate D2E/DX2 ! ! A2 A(2,1,6) 117.4575 estimate D2E/DX2 ! ! A3 A(5,1,6) 120.3633 estimate D2E/DX2 ! ! A4 A(1,2,3) 120.4141 estimate D2E/DX2 ! ! A5 A(1,2,7) 119.7929 estimate D2E/DX2 ! ! A6 A(3,2,7) 119.7929 estimate D2E/DX2 ! ! A7 A(2,3,4) 122.1793 estimate D2E/DX2 ! ! A8 A(2,3,8) 117.4575 estimate D2E/DX2 ! ! A9 A(4,3,8) 120.3632 estimate D2E/DX2 ! ! A10 A(3,4,9) 116.0088 estimate D2E/DX2 ! ! A11 A(3,4,12) 120.063 estimate D2E/DX2 ! ! A12 A(9,4,12) 123.9282 estimate D2E/DX2 ! ! A13 A(1,5,11) 116.0087 estimate D2E/DX2 ! ! A14 A(1,5,12) 120.0631 estimate D2E/DX2 ! ! A15 A(11,5,12) 123.9282 estimate D2E/DX2 ! ! A16 A(4,12,5) 115.1013 estimate D2E/DX2 ! ! A17 A(4,12,10) 122.4493 estimate D2E/DX2 ! ! A18 A(5,12,10) 122.4494 estimate D2E/DX2 ! ! D1 D(5,1,2,3) 0.0001 estimate D2E/DX2 ! ! D2 D(5,1,2,7) -179.9935 estimate D2E/DX2 ! ! D3 D(6,1,2,3) 179.9946 estimate D2E/DX2 ! ! D4 D(6,1,2,7) 0.001 estimate D2E/DX2 ! ! D5 D(2,1,5,11) 179.9935 estimate D2E/DX2 ! ! D6 D(2,1,5,12) 0.0019 estimate D2E/DX2 ! ! D7 D(6,1,5,11) -0.0008 estimate D2E/DX2 ! ! D8 D(6,1,5,12) -179.9924 estimate D2E/DX2 ! ! D9 D(1,2,3,4) -0.0002 estimate D2E/DX2 ! ! D10 D(1,2,3,8) -179.9946 estimate D2E/DX2 ! ! D11 D(7,2,3,4) 179.9935 estimate D2E/DX2 ! ! D12 D(7,2,3,8) -0.001 estimate D2E/DX2 ! ! D13 D(2,3,4,9) -179.9936 estimate D2E/DX2 ! ! D14 D(2,3,4,12) -0.0018 estimate D2E/DX2 ! ! D15 D(8,3,4,9) 0.0007 estimate D2E/DX2 ! ! D16 D(8,3,4,12) 179.9925 estimate D2E/DX2 ! ! D17 D(3,4,12,5) 0.0036 estimate D2E/DX2 ! ! D18 D(3,4,12,10) -179.9959 estimate D2E/DX2 ! ! D19 D(9,4,12,5) 179.9947 estimate D2E/DX2 ! ! D20 D(9,4,12,10) -0.0048 estimate D2E/DX2 ! ! D21 D(1,5,12,4) -0.0037 estimate D2E/DX2 ! ! D22 D(1,5,12,10) 179.9958 estimate D2E/DX2 ! ! D23 D(11,5,12,4) -179.9946 estimate D2E/DX2 ! ! D24 D(11,5,12,10) 0.0049 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 64 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.219439 0.677029 -0.000016 2 6 0 0.000000 1.375209 -0.000009 3 6 0 1.219439 0.677029 -0.000016 4 6 0 1.277682 -0.720570 -0.000026 5 6 0 -1.277681 -0.720570 -0.000027 6 1 0 -2.141970 1.270411 0.000081 7 1 0 0.000000 2.466716 0.000107 8 1 0 2.141970 1.270411 0.000081 9 1 0 2.282596 -1.160075 0.000080 10 1 0 0.000000 -2.751374 0.000079 11 1 0 -2.282595 -1.160075 0.000080 12 5 0 0.000000 -1.532956 0.000012 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.405164 0.000000 3 C 2.438878 1.405164 0.000000 4 C 2.861625 2.454539 1.398812 0.000000 5 C 1.398812 2.454538 2.861624 2.555363 0.000000 6 H 1.096889 2.144532 3.413381 3.957022 2.170484 7 H 2.165643 1.091507 2.165643 3.433841 3.433841 8 H 3.413381 2.144532 1.096889 2.170484 3.957021 9 H 3.954643 3.411438 2.122558 1.096821 3.587302 10 H 3.638816 4.126583 3.638816 2.399299 2.399299 11 H 2.122558 3.411437 3.954642 3.587302 1.096821 12 B 2.524097 2.908165 2.524097 1.514081 1.514080 6 7 8 9 10 6 H 0.000000 7 H 2.453402 0.000000 8 H 4.283940 2.453402 0.000000 9 H 5.048173 4.285307 2.434551 0.000000 10 H 4.556620 5.218090 4.556620 2.782531 0.000000 11 H 2.434551 4.285307 5.048172 4.565191 2.782530 12 B 3.528017 3.999672 3.528017 2.312852 1.218418 11 12 11 H 0.000000 12 B 2.312851 0.000000 Stoichiometry C5H6B(1-) Framework group C1[X(C5H6B)] Deg. of freedom 30 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.219441 0.677027 -0.000016 2 6 0 -0.000003 1.375209 -0.000009 3 6 0 1.219437 0.677032 -0.000016 4 6 0 1.277683 -0.720567 -0.000026 5 6 0 -1.277680 -0.720573 -0.000027 6 1 0 -2.141973 1.270407 0.000081 7 1 0 -0.000005 2.466716 0.000107 8 1 0 2.141967 1.270416 0.000081 9 1 0 2.282598 -1.160070 0.000080 10 1 0 0.000006 -2.751374 0.000079 11 1 0 -2.282593 -1.160080 0.000080 12 5 0 0.000003 -1.532956 0.000012 --------------------------------------------------------------------- Rotational constants (GHZ): 5.5096180 5.3412601 2.7120665 Standard basis: 6-31G(d,p) (6D, 7F) There are 120 symmetry adapted basis functions of A symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 188.3725205300 Hartrees. NAtoms= 12 NActive= 12 NUniq= 12 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 120 RedAO= T NBF= 120 NBsUse= 120 1.00D-06 NBFU= 120 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.27D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state of the initial guess is 1-A. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=27462769. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -219.020530557 A.U. after 13 cycles Convg = 0.8141D-08 -V/T = 2.0096 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -9.98369 -9.98368 -9.97444 -9.94511 -9.94510 Alpha occ. eigenvalues -- -6.47351 -0.60437 -0.51955 -0.46083 -0.36648 Alpha occ. eigenvalues -- -0.32170 -0.28948 -0.20937 -0.20372 -0.18995 Alpha occ. eigenvalues -- -0.16884 -0.13210 -0.09170 -0.08375 -0.03492 Alpha occ. eigenvalues -- 0.01095 Alpha virt. eigenvalues -- 0.21473 0.23248 0.26834 0.31518 0.33509 Alpha virt. eigenvalues -- 0.35289 0.35785 0.37025 0.41018 0.45220 Alpha virt. eigenvalues -- 0.48961 0.50923 0.51674 0.61209 0.61783 Alpha virt. eigenvalues -- 0.67921 0.69083 0.73808 0.76095 0.78831 Alpha virt. eigenvalues -- 0.80229 0.80420 0.81754 0.82591 0.83738 Alpha virt. eigenvalues -- 0.85613 0.86863 0.93700 0.98930 1.00625 Alpha virt. eigenvalues -- 1.01164 1.03236 1.03481 1.05600 1.11352 Alpha virt. eigenvalues -- 1.13413 1.16334 1.18822 1.26626 1.28280 Alpha virt. eigenvalues -- 1.30649 1.39443 1.39747 1.40913 1.48824 Alpha virt. eigenvalues -- 1.55973 1.58321 1.61784 1.62227 1.63728 Alpha virt. eigenvalues -- 1.75574 1.84653 1.86831 2.00413 2.06990 Alpha virt. eigenvalues -- 2.07254 2.08976 2.11661 2.11758 2.15269 Alpha virt. eigenvalues -- 2.18609 2.20394 2.28190 2.36343 2.45629 Alpha virt. eigenvalues -- 2.48179 2.50356 2.52048 2.53014 2.53653 Alpha virt. eigenvalues -- 2.58797 2.59189 2.60334 2.66648 2.66850 Alpha virt. eigenvalues -- 2.67680 2.73907 2.74839 2.77917 2.81020 Alpha virt. eigenvalues -- 2.88086 2.91980 2.93106 3.13328 3.19471 Alpha virt. eigenvalues -- 3.24204 3.31692 3.41498 3.42256 3.50886 Alpha virt. eigenvalues -- 3.62024 3.66281 3.86816 4.07556 4.38385 Alpha virt. eigenvalues -- 4.41709 4.61103 4.68164 4.95136 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.860462 0.528423 -0.039742 -0.031105 0.574376 0.322489 2 C 0.528423 4.990253 0.528423 -0.037432 -0.037432 -0.070276 3 C -0.039742 0.528423 4.860461 0.574377 -0.031105 0.007306 4 C -0.031105 -0.037432 0.574377 4.812642 -0.011745 0.000213 5 C 0.574376 -0.037432 -0.031105 -0.011745 4.812641 -0.052676 6 H 0.322489 -0.070276 0.007306 0.000213 -0.052676 0.836430 7 H -0.054935 0.340023 -0.054935 0.006203 0.006203 -0.009965 8 H 0.007306 -0.070276 0.322489 -0.052676 0.000213 -0.000270 9 H 0.000828 0.008780 -0.043543 0.310664 0.003114 0.000018 10 H 0.001129 0.001589 0.001129 -0.026253 -0.026253 -0.000189 11 H -0.043543 0.008780 0.000828 0.003114 0.310664 -0.016109 12 B -0.017400 -0.078084 -0.017400 0.559759 0.559759 0.009122 7 8 9 10 11 12 1 C -0.054935 0.007306 0.000828 0.001129 -0.043543 -0.017400 2 C 0.340023 -0.070276 0.008780 0.001589 0.008780 -0.078084 3 C -0.054935 0.322489 -0.043543 0.001129 0.000828 -0.017400 4 C 0.006203 -0.052676 0.310664 -0.026253 0.003114 0.559759 5 C 0.006203 0.000213 0.003114 -0.026253 0.310664 0.559759 6 H -0.009965 -0.000270 0.000018 -0.000189 -0.016109 0.009122 7 H 0.803742 -0.009965 -0.000283 0.000012 -0.000283 0.000674 8 H -0.009965 0.836430 -0.016109 -0.000189 0.000018 0.009122 9 H -0.000283 -0.016109 0.840724 -0.002388 -0.000154 -0.060617 10 H 0.000012 -0.000189 -0.002388 0.957574 -0.002388 0.320851 11 H -0.000283 0.000018 -0.000154 -0.002388 0.840724 -0.060617 12 B 0.000674 0.009122 -0.060617 0.320851 -0.060617 3.844595 Mulliken atomic charges: 1 1 C -0.108289 2 C -0.112769 3 C -0.108289 4 C -0.107760 5 C -0.107759 6 H -0.026092 7 H -0.026491 8 H -0.026092 9 H -0.041034 10 H -0.224625 11 H -0.041034 12 B -0.069764 Sum of Mulliken atomic charges = -1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.134382 2 C -0.139260 3 C -0.134382 4 C -0.148794 5 C -0.148793 12 B -0.294389 Sum of Mulliken charges with hydrogens summed into heavy atoms = -1.00000 Electronic spatial extent (au): = 498.8879 Charge= -1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 2.8452 Z= 0.0002 Tot= 2.8452 Quadrupole moment (field-independent basis, Debye-Ang): XX= -43.8545 YY= -49.9592 ZZ= -41.9731 XY= 0.0000 XZ= 0.0000 YZ= 0.0003 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.4078 YY= -4.6970 ZZ= 3.2892 XY= 0.0000 XZ= 0.0000 YZ= 0.0003 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 28.3819 ZZZ= 0.0004 XYY= 0.0000 XXY= 4.6396 XXZ= 0.0009 XZZ= 0.0000 YZZ= 2.6203 YYZ= 0.0002 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -364.7233 YYYY= -431.1170 ZZZZ= -47.1657 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0001 YYYZ= 0.0025 ZZZX= 0.0000 ZZZY= 0.0003 XXYY= -124.8740 XXZZ= -70.9367 YYZZ= -73.2487 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.883725205300D+02 E-N=-8.921768825820D+02 KE= 2.169337145905D+02 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000015241 -0.000016759 0.000004147 2 6 -0.000000039 0.000017801 0.000001021 3 6 -0.000014998 -0.000016851 0.000004237 4 6 0.000008923 0.000002137 0.000005795 5 6 -0.000009492 0.000002251 0.000005983 6 1 -0.000005139 0.000006919 -0.000002851 7 1 0.000000009 -0.000006226 -0.000003245 8 1 0.000005131 0.000006974 -0.000002863 9 1 -0.000006149 -0.000001535 -0.000003362 10 1 -0.000000010 -0.000010478 -0.000000354 11 1 0.000006134 -0.000001583 -0.000003430 12 5 0.000000389 0.000017347 -0.000005080 ------------------------------------------------------------------- Cartesian Forces: Max 0.000017801 RMS 0.000008129 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000010478 RMS 0.000003746 Search for a local minimum. Step number 1 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 DSYEVD returned Info= 61 IAlg= 4 N= 30 NDim= 30 NE2= 30532062 trying DSYEV. Eigenvalues --- 0.01109 0.01335 0.01513 0.01602 0.01898 Eigenvalues --- 0.02020 0.02043 0.02064 0.02071 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.23368 0.30112 Eigenvalues --- 0.30576 0.34028 0.34028 0.34036 0.34036 Eigenvalues --- 0.34639 0.42354 0.42940 0.45039 0.45816 RFO step: Lambda= 0.00000000D+00 EMin= 1.10898444D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00006297 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.65538 0.00000 0.00000 0.00000 0.00000 2.65537 R2 2.64337 0.00000 0.00000 -0.00001 -0.00001 2.64336 R3 2.07282 0.00001 0.00000 0.00002 0.00002 2.07284 R4 2.65538 0.00000 0.00000 0.00000 0.00000 2.65537 R5 2.06265 -0.00001 0.00000 -0.00002 -0.00002 2.06263 R6 2.64337 0.00000 0.00000 -0.00001 -0.00001 2.64336 R7 2.07282 0.00001 0.00000 0.00002 0.00002 2.07284 R8 2.07269 -0.00001 0.00000 -0.00001 -0.00001 2.07268 R9 2.86120 0.00000 0.00000 -0.00001 -0.00001 2.86119 R10 2.07269 0.00000 0.00000 -0.00001 -0.00001 2.07268 R11 2.86120 0.00000 0.00000 -0.00001 -0.00001 2.86119 R12 2.30248 0.00001 0.00000 0.00004 0.00004 2.30252 A1 2.13243 0.00001 0.00000 0.00002 0.00002 2.13245 A2 2.05002 -0.00001 0.00000 -0.00003 -0.00003 2.04999 A3 2.10074 0.00000 0.00000 0.00001 0.00001 2.10074 A4 2.10162 -0.00001 0.00000 -0.00003 -0.00003 2.10159 A5 2.09078 0.00000 0.00000 0.00001 0.00001 2.09080 A6 2.09078 0.00000 0.00000 0.00001 0.00001 2.09080 A7 2.13243 0.00000 0.00000 0.00002 0.00002 2.13245 A8 2.05002 -0.00001 0.00000 -0.00003 -0.00003 2.04999 A9 2.10073 0.00000 0.00000 0.00001 0.00001 2.10074 A10 2.02474 0.00001 0.00000 0.00003 0.00003 2.02477 A11 2.09549 0.00000 0.00000 -0.00001 -0.00001 2.09548 A12 2.16296 0.00000 0.00000 -0.00002 -0.00002 2.16294 A13 2.02473 0.00001 0.00000 0.00003 0.00003 2.02477 A14 2.09550 0.00000 0.00000 -0.00002 -0.00002 2.09548 A15 2.16295 0.00000 0.00000 -0.00002 -0.00002 2.16294 A16 2.00890 0.00000 0.00000 0.00001 0.00001 2.00891 A17 2.13714 0.00000 0.00000 -0.00001 -0.00001 2.13714 A18 2.13714 0.00000 0.00000 -0.00001 -0.00001 2.13714 D1 0.00000 0.00000 0.00000 -0.00004 -0.00004 -0.00004 D2 -3.14148 0.00000 0.00000 -0.00014 -0.00014 3.14157 D3 3.14150 0.00000 0.00000 0.00010 0.00010 -3.14159 D4 0.00002 0.00000 0.00000 0.00000 0.00000 0.00001 D5 3.14148 0.00000 0.00000 0.00016 0.00016 -3.14154 D6 0.00003 0.00000 0.00000 -0.00004 -0.00004 0.00000 D7 -0.00001 0.00000 0.00000 0.00002 0.00002 0.00001 D8 -3.14146 0.00000 0.00000 -0.00018 -0.00018 3.14155 D9 0.00000 0.00000 0.00000 0.00004 0.00004 0.00004 D10 -3.14150 0.00000 0.00000 -0.00010 -0.00010 3.14159 D11 3.14148 0.00000 0.00000 0.00014 0.00014 -3.14157 D12 -0.00002 0.00000 0.00000 0.00000 0.00000 -0.00001 D13 -3.14148 0.00000 0.00000 -0.00016 -0.00016 3.14154 D14 -0.00003 0.00000 0.00000 0.00003 0.00003 0.00000 D15 0.00001 0.00000 0.00000 -0.00002 -0.00002 -0.00001 D16 3.14146 0.00000 0.00000 0.00018 0.00018 -3.14155 D17 0.00006 0.00000 0.00000 -0.00010 -0.00010 -0.00004 D18 -3.14152 0.00000 0.00000 -0.00012 -0.00012 3.14154 D19 3.14150 0.00000 0.00000 0.00011 0.00011 -3.14158 D20 -0.00008 0.00000 0.00000 0.00009 0.00009 0.00001 D21 -0.00006 0.00000 0.00000 0.00010 0.00010 0.00004 D22 3.14152 0.00000 0.00000 0.00012 0.00012 -3.14154 D23 -3.14150 0.00000 0.00000 -0.00011 -0.00011 3.14158 D24 0.00009 0.00000 0.00000 -0.00009 -0.00009 -0.00001 Item Value Threshold Converged? Maximum Force 0.000010 0.000450 YES RMS Force 0.000004 0.000300 YES Maximum Displacement 0.000192 0.001800 YES RMS Displacement 0.000063 0.001200 YES Predicted change in Energy=-3.770005D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4052 -DE/DX = 0.0 ! ! R2 R(1,5) 1.3988 -DE/DX = 0.0 ! ! R3 R(1,6) 1.0969 -DE/DX = 0.0 ! ! R4 R(2,3) 1.4052 -DE/DX = 0.0 ! ! R5 R(2,7) 1.0915 -DE/DX = 0.0 ! ! R6 R(3,4) 1.3988 -DE/DX = 0.0 ! ! R7 R(3,8) 1.0969 -DE/DX = 0.0 ! ! R8 R(4,9) 1.0968 -DE/DX = 0.0 ! ! R9 R(4,12) 1.5141 -DE/DX = 0.0 ! ! R10 R(5,11) 1.0968 -DE/DX = 0.0 ! ! R11 R(5,12) 1.5141 -DE/DX = 0.0 ! ! R12 R(10,12) 1.2184 -DE/DX = 0.0 ! ! A1 A(2,1,5) 122.1792 -DE/DX = 0.0 ! ! A2 A(2,1,6) 117.4575 -DE/DX = 0.0 ! ! A3 A(5,1,6) 120.3633 -DE/DX = 0.0 ! ! A4 A(1,2,3) 120.4141 -DE/DX = 0.0 ! ! A5 A(1,2,7) 119.7929 -DE/DX = 0.0 ! ! A6 A(3,2,7) 119.7929 -DE/DX = 0.0 ! ! A7 A(2,3,4) 122.1793 -DE/DX = 0.0 ! ! A8 A(2,3,8) 117.4575 -DE/DX = 0.0 ! ! A9 A(4,3,8) 120.3632 -DE/DX = 0.0 ! ! A10 A(3,4,9) 116.0088 -DE/DX = 0.0 ! ! A11 A(3,4,12) 120.063 -DE/DX = 0.0 ! ! A12 A(9,4,12) 123.9282 -DE/DX = 0.0 ! ! A13 A(1,5,11) 116.0087 -DE/DX = 0.0 ! ! A14 A(1,5,12) 120.0631 -DE/DX = 0.0 ! ! A15 A(11,5,12) 123.9282 -DE/DX = 0.0 ! ! A16 A(4,12,5) 115.1013 -DE/DX = 0.0 ! ! A17 A(4,12,10) 122.4493 -DE/DX = 0.0 ! ! A18 A(5,12,10) 122.4494 -DE/DX = 0.0 ! ! D1 D(5,1,2,3) 0.0001 -DE/DX = 0.0 ! ! D2 D(5,1,2,7) 180.0065 -DE/DX = 0.0 ! ! D3 D(6,1,2,3) -180.0054 -DE/DX = 0.0 ! ! D4 D(6,1,2,7) 0.001 -DE/DX = 0.0 ! ! D5 D(2,1,5,11) -180.0065 -DE/DX = 0.0 ! ! D6 D(2,1,5,12) 0.0019 -DE/DX = 0.0 ! ! D7 D(6,1,5,11) -0.0008 -DE/DX = 0.0 ! ! D8 D(6,1,5,12) 180.0076 -DE/DX = 0.0 ! ! D9 D(1,2,3,4) -0.0002 -DE/DX = 0.0 ! ! D10 D(1,2,3,8) 180.0054 -DE/DX = 0.0 ! ! D11 D(7,2,3,4) -180.0065 -DE/DX = 0.0 ! ! D12 D(7,2,3,8) -0.001 -DE/DX = 0.0 ! ! D13 D(2,3,4,9) 180.0064 -DE/DX = 0.0 ! ! D14 D(2,3,4,12) -0.0018 -DE/DX = 0.0 ! ! D15 D(8,3,4,9) 0.0007 -DE/DX = 0.0 ! ! D16 D(8,3,4,12) -180.0075 -DE/DX = 0.0 ! ! D17 D(3,4,12,5) 0.0036 -DE/DX = 0.0 ! ! D18 D(3,4,12,10) 180.0041 -DE/DX = 0.0 ! ! D19 D(9,4,12,5) -180.0053 -DE/DX = 0.0 ! ! D20 D(9,4,12,10) -0.0048 -DE/DX = 0.0 ! ! D21 D(1,5,12,4) -0.0037 -DE/DX = 0.0 ! ! D22 D(1,5,12,10) -180.0042 -DE/DX = 0.0 ! ! D23 D(11,5,12,4) 180.0054 -DE/DX = 0.0 ! ! D24 D(11,5,12,10) 0.0049 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.219439 0.677029 -0.000016 2 6 0 0.000000 1.375209 -0.000009 3 6 0 1.219439 0.677029 -0.000016 4 6 0 1.277682 -0.720570 -0.000026 5 6 0 -1.277681 -0.720570 -0.000027 6 1 0 -2.141970 1.270411 0.000081 7 1 0 0.000000 2.466716 0.000107 8 1 0 2.141970 1.270411 0.000081 9 1 0 2.282596 -1.160075 0.000080 10 1 0 0.000000 -2.751374 0.000079 11 1 0 -2.282595 -1.160075 0.000080 12 5 0 0.000000 -1.532956 0.000012 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.405164 0.000000 3 C 2.438878 1.405164 0.000000 4 C 2.861625 2.454539 1.398812 0.000000 5 C 1.398812 2.454538 2.861624 2.555363 0.000000 6 H 1.096889 2.144532 3.413381 3.957022 2.170484 7 H 2.165643 1.091507 2.165643 3.433841 3.433841 8 H 3.413381 2.144532 1.096889 2.170484 3.957021 9 H 3.954643 3.411438 2.122558 1.096821 3.587302 10 H 3.638816 4.126583 3.638816 2.399299 2.399299 11 H 2.122558 3.411437 3.954642 3.587302 1.096821 12 B 2.524097 2.908165 2.524097 1.514081 1.514080 6 7 8 9 10 6 H 0.000000 7 H 2.453402 0.000000 8 H 4.283940 2.453402 0.000000 9 H 5.048173 4.285307 2.434551 0.000000 10 H 4.556620 5.218090 4.556620 2.782531 0.000000 11 H 2.434551 4.285307 5.048172 4.565191 2.782530 12 B 3.528017 3.999672 3.528017 2.312852 1.218418 11 12 11 H 0.000000 12 B 2.312851 0.000000 Stoichiometry C5H6B(1-) Framework group C1[X(C5H6B)] Deg. of freedom 30 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.219441 0.677027 -0.000016 2 6 0 -0.000003 1.375209 -0.000009 3 6 0 1.219437 0.677032 -0.000016 4 6 0 1.277683 -0.720567 -0.000026 5 6 0 -1.277680 -0.720573 -0.000027 6 1 0 -2.141973 1.270407 0.000081 7 1 0 -0.000005 2.466716 0.000107 8 1 0 2.141967 1.270416 0.000081 9 1 0 2.282598 -1.160070 0.000080 10 1 0 0.000006 -2.751374 0.000079 11 1 0 -2.282593 -1.160080 0.000080 12 5 0 0.000003 -1.532956 0.000012 --------------------------------------------------------------------- Rotational constants (GHZ): 5.5096180 5.3412601 2.7120665 1\1\GINC-CX1-15-36-1\FOpt\RB3LYP\6-31G(d,p)\C5H6B1(1-)\SCAN-USER-1\22- Nov-2012\0\\# opt b3lyp/6-31g(d,p) geom=connectivity\\Title Card Requi red\\-1,1\C,-1.219439,0.677029,-0.000016\C,0.,1.375209,-0.000009\C,1.2 19439,0.677029,-0.000016\C,1.277682,-0.72057,-0.000026\C,-1.277681,-0. 72057,-0.000027\H,-2.14197,1.270411,0.000081\H,0.,2.466716,0.000107\H, 2.14197,1.270411,0.000081\H,2.282596,-1.160075,0.00008\H,0.,-2.751374, 0.000079\H,-2.282595,-1.160075,0.00008\B,0.,-1.532956,0.000012\\Versio n=EM64L-G09RevC.01\State=1-A\HF=-219.0205306\RMSD=8.141e-09\RMSF=8.129 e-06\Dipole=-0.0000001,1.1193754,0.0000853\Quadrupole=1.0466492,-3.492 0845,2.4454353,-0.0000018,-0.0000018,0.0001896\PG=C01 [X(C5H6B1)]\\@ IT IS A CAPITAL MISTAKE TO THEORIZE BEFORE ONE HAS DATA. INSENSIBLY ONE BEGINS TO TWIST FACTS TO SUIT THEORIES RATHER THAN THEORIES TO SUIT FACTS. -- SHERLOCK HOLMES Job cpu time: 0 days 0 hours 0 minutes 54.8 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Thu Nov 22 13:19:24 2012.