Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 3012. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 11-Mar-2015 ****************************************** %chk=\\icnas3.cc.ic.ac.uk\el1612\Desktop\Year 3 Labs\INORG COMP\Boratabenzene\op t\ELC_BORATABENZENE_OPT_631GDP_B3LYP.chk Default route: MaxDisk=10GB ---------------------------------------------------------------------- # opt=tight b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------------- 1/7=10,14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; -------------------------- optimisation boratabenzene -------------------------- Symbolic Z-matrix: Charge = -1 Multiplicity = 1 C 0. 1.27771 -0.72058 C 0. 1.21944 0.67704 C 0. 0. 1.3752 C 0. -1.21944 0.67704 C 0. -1.27771 -0.72058 H 0. 0. -2.75138 H 0. 2.2826 -1.16012 H 0. 2.14195 1.27046 H 0. 0. 2.4667 H 0. -2.14195 1.27046 H 0. -2.2826 -1.16012 B 0. 0. -1.53293 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3988 estimate D2E/DX2 ! ! R2 R(1,7) 1.0968 estimate D2E/DX2 ! ! R3 R(1,12) 1.5141 estimate D2E/DX2 ! ! R4 R(2,3) 1.4052 estimate D2E/DX2 ! ! R5 R(2,8) 1.0969 estimate D2E/DX2 ! ! R6 R(3,4) 1.4052 estimate D2E/DX2 ! ! R7 R(3,9) 1.0915 estimate D2E/DX2 ! ! R8 R(4,5) 1.3988 estimate D2E/DX2 ! ! R9 R(4,10) 1.0969 estimate D2E/DX2 ! ! R10 R(5,11) 1.0968 estimate D2E/DX2 ! ! R11 R(5,12) 1.5141 estimate D2E/DX2 ! ! R12 R(6,12) 1.2184 estimate D2E/DX2 ! ! A1 A(2,1,7) 116.0121 estimate D2E/DX2 ! ! A2 A(2,1,12) 120.0602 estimate D2E/DX2 ! ! A3 A(7,1,12) 123.9277 estimate D2E/DX2 ! ! A4 A(1,2,3) 122.1798 estimate D2E/DX2 ! ! A5 A(1,2,8) 120.3645 estimate D2E/DX2 ! ! A6 A(3,2,8) 117.4557 estimate D2E/DX2 ! ! A7 A(2,3,4) 120.4153 estimate D2E/DX2 ! ! A8 A(2,3,9) 119.7924 estimate D2E/DX2 ! ! A9 A(4,3,9) 119.7924 estimate D2E/DX2 ! ! A10 A(3,4,5) 122.1798 estimate D2E/DX2 ! ! A11 A(3,4,10) 117.4557 estimate D2E/DX2 ! ! A12 A(5,4,10) 120.3645 estimate D2E/DX2 ! ! A13 A(4,5,11) 116.0121 estimate D2E/DX2 ! ! A14 A(4,5,12) 120.0602 estimate D2E/DX2 ! ! A15 A(11,5,12) 123.9277 estimate D2E/DX2 ! ! A16 A(1,12,5) 115.1048 estimate D2E/DX2 ! ! A17 A(1,12,6) 122.4476 estimate D2E/DX2 ! ! A18 A(5,12,6) 122.4476 estimate D2E/DX2 ! ! D1 D(7,1,2,3) 180.0 estimate D2E/DX2 ! ! D2 D(7,1,2,8) 0.0 estimate D2E/DX2 ! ! D3 D(12,1,2,3) 0.0 estimate D2E/DX2 ! ! D4 D(12,1,2,8) 180.0 estimate D2E/DX2 ! ! D5 D(2,1,12,5) 0.0 estimate D2E/DX2 ! ! D6 D(2,1,12,6) 180.0 estimate D2E/DX2 ! ! D7 D(7,1,12,5) 180.0 estimate D2E/DX2 ! ! D8 D(7,1,12,6) 0.0 estimate D2E/DX2 ! ! D9 D(1,2,3,4) 0.0 estimate D2E/DX2 ! ! D10 D(1,2,3,9) 180.0 estimate D2E/DX2 ! ! D11 D(8,2,3,4) 180.0 estimate D2E/DX2 ! ! D12 D(8,2,3,9) 0.0 estimate D2E/DX2 ! ! D13 D(2,3,4,5) 0.0 estimate D2E/DX2 ! ! D14 D(2,3,4,10) 180.0 estimate D2E/DX2 ! ! D15 D(9,3,4,5) 180.0 estimate D2E/DX2 ! ! D16 D(9,3,4,10) 0.0 estimate D2E/DX2 ! ! D17 D(3,4,5,11) 180.0 estimate D2E/DX2 ! ! D18 D(3,4,5,12) 0.0 estimate D2E/DX2 ! ! D19 D(10,4,5,11) 0.0 estimate D2E/DX2 ! ! D20 D(10,4,5,12) 180.0 estimate D2E/DX2 ! ! D21 D(4,5,12,1) 0.0 estimate D2E/DX2 ! ! D22 D(4,5,12,6) 180.0 estimate D2E/DX2 ! ! D23 D(11,5,12,1) 180.0 estimate D2E/DX2 ! ! D24 D(11,5,12,6) 0.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 64 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.277706 -0.720582 2 6 0 0.000000 1.219435 0.677037 3 6 0 0.000000 0.000000 1.375198 4 6 0 0.000000 -1.219435 0.677037 5 6 0 0.000000 -1.277706 -0.720582 6 1 0 0.000000 0.000000 -2.751377 7 1 0 0.000000 2.282599 -1.160124 8 1 0 0.000000 2.141950 1.270463 9 1 0 0.000000 0.000000 2.466695 10 1 0 0.000000 -2.141950 1.270463 11 1 0 0.000000 -2.282599 -1.160124 12 5 0 0.000000 0.000000 -1.532929 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.398833 0.000000 3 C 2.454552 1.405151 0.000000 4 C 2.861652 2.438870 1.405151 0.000000 5 C 2.555412 2.861652 2.454552 1.398833 0.000000 6 H 2.399304 3.638825 4.126575 3.638825 2.399304 7 H 1.096817 2.122611 3.411468 3.954668 3.587335 8 H 2.170525 1.096899 2.144509 3.413365 3.957058 9 H 3.433841 2.165617 1.091497 2.165617 3.433841 10 H 3.957058 3.413365 2.144509 1.096899 2.170525 11 H 3.587335 3.954668 3.411468 2.122611 1.096817 12 B 1.514081 2.524078 2.908127 2.524078 1.514081 6 7 8 9 10 6 H 0.000000 7 H 2.782507 0.000000 8 H 4.556660 2.434653 0.000000 9 H 5.218072 4.285332 2.453349 0.000000 10 H 4.556660 5.048206 4.283900 2.453349 0.000000 11 H 2.782507 4.565198 5.048206 4.285332 2.434653 12 B 1.218448 2.312843 3.528024 3.999624 3.528024 11 12 11 H 0.000000 12 B 2.312843 0.000000 Stoichiometry C5H6B(1-) Framework group C2V[C2(HBCH),SGV(C4H4)] Deg. of freedom 11 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.277706 -0.720582 2 6 0 0.000000 1.219435 0.677037 3 6 0 0.000000 0.000000 1.375198 4 6 0 0.000000 -1.219435 0.677037 5 6 0 0.000000 -1.277706 -0.720582 6 1 0 0.000000 0.000000 -2.751377 7 1 0 0.000000 2.282599 -1.160124 8 1 0 0.000000 2.141950 1.270463 9 1 0 0.000000 0.000000 2.466695 10 1 0 0.000000 -2.141950 1.270463 11 1 0 0.000000 -2.282599 -1.160124 12 5 0 0.000000 0.000000 -1.532929 --------------------------------------------------------------------- Rotational constants (GHZ): 5.5096294 5.3411965 2.7120528 Standard basis: 6-31G(d,p) (6D, 7F) There are 52 symmetry adapted cartesian basis functions of A1 symmetry. There are 12 symmetry adapted cartesian basis functions of A2 symmetry. There are 18 symmetry adapted cartesian basis functions of B1 symmetry. There are 38 symmetry adapted cartesian basis functions of B2 symmetry. There are 52 symmetry adapted basis functions of A1 symmetry. There are 12 symmetry adapted basis functions of A2 symmetry. There are 18 symmetry adapted basis functions of B1 symmetry. There are 38 symmetry adapted basis functions of B2 symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 188.3720176850 Hartrees. NAtoms= 12 NActive= 12 NUniq= 8 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 1.21D-03 NBF= 52 12 18 38 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 52 12 18 38 ExpMin= 1.27D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (B2) (A1) (A1) (B1) (A1) (B2) (A2) (B1) Virtual (A2) (B1) (A1) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (B1) (A1) (B2) (B2) (A1) (B1) (A1) (A2) (B2) (A1) (B1) (A2) (B1) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (B2) (B2) (A2) (B1) (A1) (A1) (B1) (A2) (A2) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (B2) (A2) (A1) (A1) (B1) (B2) (A2) (A1) (B2) (B1) (A1) (B2) (B1) (B2) (B1) (A2) (A1) (B2) (A1) (B1) (B2) (A2) (A2) (A1) (B2) (B1) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=33472662. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -219.020522989 A.U. after 13 cycles NFock= 13 Conv=0.44D-08 -V/T= 2.0096 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (B2) (A1) (B1) (A1) (B2) (A2) (B1) Virtual (A2) (B1) (A1) (B2) (A1) (B2) (A1) (B1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (B1) (A1) (B2) (B1) (A1) (A2) (A1) (B2) (B2) (A1) (B1) (A2) (B1) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (B2) (A1) (A1) (B2) (B2) (A1) (A2) (B1) (A1) (B1) (A2) (B2) (A2) (B1) (A1) (B2) (A1) (A1) (A1) (B2) (B1) (B2) (A2) (A1) (A1) (B1) (B2) (A2) (A1) (B2) (B1) (A1) (B1) (B2) (B1) (B2) (A2) (A1) (B2) (A1) (B1) (B2) (A2) (A2) (A1) (B1) (B2) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -9.98369 -9.98368 -9.97444 -9.94511 -9.94510 Alpha occ. eigenvalues -- -6.47351 -0.60437 -0.51954 -0.46083 -0.36649 Alpha occ. eigenvalues -- -0.32169 -0.28948 -0.20936 -0.20372 -0.18995 Alpha occ. eigenvalues -- -0.16884 -0.13209 -0.09169 -0.08375 -0.03493 Alpha occ. eigenvalues -- 0.01095 Alpha virt. eigenvalues -- 0.21472 0.23249 0.26833 0.31518 0.33510 Alpha virt. eigenvalues -- 0.35289 0.35785 0.37025 0.41018 0.45221 Alpha virt. eigenvalues -- 0.48963 0.50923 0.51674 0.61209 0.61783 Alpha virt. eigenvalues -- 0.67923 0.69085 0.73807 0.76096 0.78831 Alpha virt. eigenvalues -- 0.80227 0.80420 0.81754 0.82592 0.83738 Alpha virt. eigenvalues -- 0.85613 0.86863 0.93700 0.98932 1.00624 Alpha virt. eigenvalues -- 1.01166 1.03237 1.03480 1.05600 1.11352 Alpha virt. eigenvalues -- 1.13413 1.16335 1.18820 1.26627 1.28279 Alpha virt. eigenvalues -- 1.30647 1.39441 1.39747 1.40914 1.48829 Alpha virt. eigenvalues -- 1.55973 1.58320 1.61783 1.62227 1.63727 Alpha virt. eigenvalues -- 1.75573 1.84653 1.86831 2.00411 2.06991 Alpha virt. eigenvalues -- 2.07254 2.08977 2.11661 2.11759 2.15267 Alpha virt. eigenvalues -- 2.18611 2.20395 2.28186 2.36344 2.45628 Alpha virt. eigenvalues -- 2.48179 2.50354 2.52049 2.53013 2.53654 Alpha virt. eigenvalues -- 2.58796 2.59189 2.60334 2.66648 2.66849 Alpha virt. eigenvalues -- 2.67681 2.73907 2.74837 2.77916 2.81020 Alpha virt. eigenvalues -- 2.88085 2.91980 2.93106 3.13327 3.19472 Alpha virt. eigenvalues -- 3.24201 3.31688 3.41497 3.42256 3.50885 Alpha virt. eigenvalues -- 3.62022 3.66281 3.86815 4.07554 4.38385 Alpha virt. eigenvalues -- 4.41709 4.61103 4.68164 4.95135 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.812609 0.574411 -0.037406 -0.031098 -0.011784 -0.026247 2 C 0.574411 4.860427 0.528390 -0.039743 -0.031098 0.001128 3 C -0.037406 0.528390 4.990310 0.528390 -0.037406 0.001589 4 C -0.031098 -0.039743 0.528390 4.860427 0.574411 0.001128 5 C -0.011784 -0.031098 -0.037406 0.574411 4.812609 -0.026247 6 H -0.026247 0.001128 0.001589 0.001128 -0.026247 0.957637 7 H 0.310663 -0.043545 0.008781 0.000827 0.003114 -0.002386 8 H -0.052680 0.322495 -0.070278 0.007307 0.000212 -0.000189 9 H 0.006201 -0.054930 0.340040 -0.054930 0.006201 0.000012 10 H 0.000212 0.007307 -0.070278 0.322495 -0.052680 -0.000189 11 H 0.003114 0.000827 0.008781 -0.043545 0.310663 -0.002386 12 B 0.559743 -0.017380 -0.078132 -0.017380 0.559743 0.320826 7 8 9 10 11 12 1 C 0.310663 -0.052680 0.006201 0.000212 0.003114 0.559743 2 C -0.043545 0.322495 -0.054930 0.007307 0.000827 -0.017380 3 C 0.008781 -0.070278 0.340040 -0.070278 0.008781 -0.078132 4 C 0.000827 0.007307 -0.054930 0.322495 -0.043545 -0.017380 5 C 0.003114 0.000212 0.006201 -0.052680 0.310663 0.559743 6 H -0.002386 -0.000189 0.000012 -0.000189 -0.002386 0.320826 7 H 0.840724 -0.016107 -0.000283 0.000018 -0.000154 -0.060626 8 H -0.016107 0.836427 -0.009969 -0.000271 0.000018 0.009124 9 H -0.000283 -0.009969 0.803720 -0.009969 -0.000283 0.000675 10 H 0.000018 -0.000271 -0.009969 0.836427 -0.016107 0.009124 11 H -0.000154 0.000018 -0.000283 -0.016107 0.840724 -0.060626 12 B -0.060626 0.009124 0.000675 0.009124 -0.060626 3.844677 Mulliken charges: 1 1 C -0.107737 2 C -0.108291 3 C -0.112780 4 C -0.108291 5 C -0.107737 6 H -0.224677 7 H -0.041027 8 H -0.026091 9 H -0.026485 10 H -0.026091 11 H -0.041027 12 B -0.069767 Sum of Mulliken charges = -1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.148764 2 C -0.134382 3 C -0.139265 4 C -0.134382 5 C -0.148764 12 B -0.294444 Electronic spatial extent (au): = 498.8906 Charge= -1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 2.8455 Tot= 2.8455 Quadrupole moment (field-independent basis, Debye-Ang): XX= -41.9731 YY= -43.8549 ZZ= -49.9594 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 3.2894 YY= 1.4076 ZZ= -4.6970 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 28.3855 XYY= 0.0000 XXY= 0.0000 XXZ= 2.6205 XZZ= 0.0000 YZZ= 0.0000 YYZ= 4.6396 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -47.1655 YYYY= -364.7283 ZZZZ= -431.1237 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -70.9378 XXZZ= -73.2482 YYZZ= -124.8739 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.883720176850D+02 E-N=-8.921757793648D+02 KE= 2.169336472553D+02 Symmetry A1 KE= 1.339790675093D+02 Symmetry A2 KE= 2.150423631458D+00 Symmetry B1 KE= 3.751892952911D+00 Symmetry B2 KE= 7.705226316165D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 -0.000003335 0.000002905 2 6 0.000000000 0.000000090 -0.000000913 3 6 0.000000000 0.000000000 0.000000394 4 6 0.000000000 -0.000000090 -0.000000913 5 6 0.000000000 0.000003335 0.000002905 6 1 0.000000000 0.000000000 0.000000778 7 1 0.000000000 0.000001207 -0.000000656 8 1 0.000000000 0.000000415 -0.000000115 9 1 0.000000000 0.000000000 -0.000000428 10 1 0.000000000 -0.000000415 -0.000000115 11 1 0.000000000 -0.000001207 -0.000000656 12 5 0.000000000 0.000000000 -0.000003185 ------------------------------------------------------------------- Cartesian Forces: Max 0.000003335 RMS 0.000001248 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000001862 RMS 0.000000605 Search for a local minimum. Step number 1 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01109 0.01335 0.01513 0.01602 0.01898 Eigenvalues --- 0.02021 0.02043 0.02064 0.02071 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.23366 0.30112 Eigenvalues --- 0.30576 0.34027 0.34027 0.34037 0.34037 Eigenvalues --- 0.34640 0.42352 0.42942 0.45039 0.45813 RFO step: Lambda= 0.00000000D+00 EMin= 1.10898775D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00000248 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 2.22D-13 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.64341 0.00000 0.00000 0.00000 0.00000 2.64341 R2 2.07268 0.00000 0.00000 0.00000 0.00000 2.07269 R3 2.86120 0.00000 0.00000 0.00000 0.00000 2.86120 R4 2.65535 0.00000 0.00000 0.00000 0.00000 2.65535 R5 2.07284 0.00000 0.00000 0.00000 0.00000 2.07284 R6 2.65535 0.00000 0.00000 0.00000 0.00000 2.65535 R7 2.06263 0.00000 0.00000 0.00000 0.00000 2.06263 R8 2.64341 0.00000 0.00000 0.00000 0.00000 2.64341 R9 2.07284 0.00000 0.00000 0.00000 0.00000 2.07284 R10 2.07268 0.00000 0.00000 0.00000 0.00000 2.07269 R11 2.86120 0.00000 0.00000 0.00000 0.00000 2.86120 R12 2.30253 0.00000 0.00000 0.00000 0.00000 2.30253 A1 2.02479 0.00000 0.00000 0.00000 0.00000 2.02479 A2 2.09545 0.00000 0.00000 0.00001 0.00001 2.09545 A3 2.16295 0.00000 0.00000 0.00000 0.00000 2.16294 A4 2.13244 0.00000 0.00000 0.00000 0.00000 2.13244 A5 2.10076 0.00000 0.00000 0.00000 0.00000 2.10076 A6 2.04999 0.00000 0.00000 0.00000 0.00000 2.04999 A7 2.10164 0.00000 0.00000 0.00000 0.00000 2.10164 A8 2.09077 0.00000 0.00000 0.00000 0.00000 2.09077 A9 2.09077 0.00000 0.00000 0.00000 0.00000 2.09077 A10 2.13244 0.00000 0.00000 0.00000 0.00000 2.13244 A11 2.04999 0.00000 0.00000 0.00000 0.00000 2.04999 A12 2.10076 0.00000 0.00000 0.00000 0.00000 2.10076 A13 2.02479 0.00000 0.00000 0.00000 0.00000 2.02479 A14 2.09545 0.00000 0.00000 0.00001 0.00001 2.09545 A15 2.16295 0.00000 0.00000 0.00000 0.00000 2.16294 A16 2.00896 0.00000 0.00000 -0.00001 -0.00001 2.00895 A17 2.13711 0.00000 0.00000 0.00000 0.00000 2.13712 A18 2.13711 0.00000 0.00000 0.00000 0.00000 2.13712 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D6 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D7 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D10 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D14 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D17 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D20 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D21 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.000002 0.000015 YES RMS Force 0.000001 0.000010 YES Maximum Displacement 0.000008 0.000060 YES RMS Displacement 0.000002 0.000040 YES Predicted change in Energy=-3.881795D-11 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3988 -DE/DX = 0.0 ! ! R2 R(1,7) 1.0968 -DE/DX = 0.0 ! ! R3 R(1,12) 1.5141 -DE/DX = 0.0 ! ! R4 R(2,3) 1.4052 -DE/DX = 0.0 ! ! R5 R(2,8) 1.0969 -DE/DX = 0.0 ! ! R6 R(3,4) 1.4052 -DE/DX = 0.0 ! ! R7 R(3,9) 1.0915 -DE/DX = 0.0 ! ! R8 R(4,5) 1.3988 -DE/DX = 0.0 ! ! R9 R(4,10) 1.0969 -DE/DX = 0.0 ! ! R10 R(5,11) 1.0968 -DE/DX = 0.0 ! ! R11 R(5,12) 1.5141 -DE/DX = 0.0 ! ! R12 R(6,12) 1.2184 -DE/DX = 0.0 ! ! A1 A(2,1,7) 116.0121 -DE/DX = 0.0 ! ! A2 A(2,1,12) 120.0602 -DE/DX = 0.0 ! ! A3 A(7,1,12) 123.9277 -DE/DX = 0.0 ! ! A4 A(1,2,3) 122.1798 -DE/DX = 0.0 ! ! A5 A(1,2,8) 120.3645 -DE/DX = 0.0 ! ! A6 A(3,2,8) 117.4557 -DE/DX = 0.0 ! ! A7 A(2,3,4) 120.4153 -DE/DX = 0.0 ! ! A8 A(2,3,9) 119.7924 -DE/DX = 0.0 ! ! A9 A(4,3,9) 119.7924 -DE/DX = 0.0 ! ! A10 A(3,4,5) 122.1798 -DE/DX = 0.0 ! ! A11 A(3,4,10) 117.4557 -DE/DX = 0.0 ! ! A12 A(5,4,10) 120.3645 -DE/DX = 0.0 ! ! A13 A(4,5,11) 116.0121 -DE/DX = 0.0 ! ! A14 A(4,5,12) 120.0602 -DE/DX = 0.0 ! ! A15 A(11,5,12) 123.9277 -DE/DX = 0.0 ! ! A16 A(1,12,5) 115.1048 -DE/DX = 0.0 ! ! A17 A(1,12,6) 122.4476 -DE/DX = 0.0 ! ! A18 A(5,12,6) 122.4476 -DE/DX = 0.0 ! ! D1 D(7,1,2,3) 180.0 -DE/DX = 0.0 ! ! D2 D(7,1,2,8) 0.0 -DE/DX = 0.0 ! ! D3 D(12,1,2,3) 0.0 -DE/DX = 0.0 ! ! D4 D(12,1,2,8) 180.0 -DE/DX = 0.0 ! ! D5 D(2,1,12,5) 0.0 -DE/DX = 0.0 ! ! D6 D(2,1,12,6) 180.0 -DE/DX = 0.0 ! ! D7 D(7,1,12,5) 180.0 -DE/DX = 0.0 ! ! D8 D(7,1,12,6) 0.0 -DE/DX = 0.0 ! ! D9 D(1,2,3,4) 0.0 -DE/DX = 0.0 ! ! D10 D(1,2,3,9) 180.0 -DE/DX = 0.0 ! ! D11 D(8,2,3,4) 180.0 -DE/DX = 0.0 ! ! D12 D(8,2,3,9) 0.0 -DE/DX = 0.0 ! ! D13 D(2,3,4,5) 0.0 -DE/DX = 0.0 ! ! D14 D(2,3,4,10) 180.0 -DE/DX = 0.0 ! ! D15 D(9,3,4,5) 180.0 -DE/DX = 0.0 ! ! D16 D(9,3,4,10) 0.0 -DE/DX = 0.0 ! ! D17 D(3,4,5,11) 180.0 -DE/DX = 0.0 ! ! D18 D(3,4,5,12) 0.0 -DE/DX = 0.0 ! ! D19 D(10,4,5,11) 0.0 -DE/DX = 0.0 ! ! D20 D(10,4,5,12) 180.0 -DE/DX = 0.0 ! ! D21 D(4,5,12,1) 0.0 -DE/DX = 0.0 ! ! D22 D(4,5,12,6) 180.0 -DE/DX = 0.0 ! ! D23 D(11,5,12,1) 180.0 -DE/DX = 0.0 ! ! D24 D(11,5,12,6) 0.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.277706 -0.720582 2 6 0 0.000000 1.219435 0.677037 3 6 0 0.000000 0.000000 1.375198 4 6 0 0.000000 -1.219435 0.677037 5 6 0 0.000000 -1.277706 -0.720582 6 1 0 0.000000 0.000000 -2.751377 7 1 0 0.000000 2.282599 -1.160124 8 1 0 0.000000 2.141950 1.270463 9 1 0 0.000000 0.000000 2.466695 10 1 0 0.000000 -2.141950 1.270463 11 1 0 0.000000 -2.282599 -1.160124 12 5 0 0.000000 0.000000 -1.532929 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.398833 0.000000 3 C 2.454552 1.405151 0.000000 4 C 2.861652 2.438870 1.405151 0.000000 5 C 2.555412 2.861652 2.454552 1.398833 0.000000 6 H 2.399304 3.638825 4.126575 3.638825 2.399304 7 H 1.096817 2.122611 3.411468 3.954668 3.587335 8 H 2.170525 1.096899 2.144509 3.413365 3.957058 9 H 3.433841 2.165617 1.091497 2.165617 3.433841 10 H 3.957058 3.413365 2.144509 1.096899 2.170525 11 H 3.587335 3.954668 3.411468 2.122611 1.096817 12 B 1.514081 2.524078 2.908127 2.524078 1.514081 6 7 8 9 10 6 H 0.000000 7 H 2.782507 0.000000 8 H 4.556660 2.434653 0.000000 9 H 5.218072 4.285332 2.453349 0.000000 10 H 4.556660 5.048206 4.283900 2.453349 0.000000 11 H 2.782507 4.565198 5.048206 4.285332 2.434653 12 B 1.218448 2.312843 3.528024 3.999624 3.528024 11 12 11 H 0.000000 12 B 2.312843 0.000000 Stoichiometry C5H6B(1-) Framework group C2V[C2(HBCH),SGV(C4H4)] Deg. of freedom 11 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.277706 -0.720582 2 6 0 0.000000 1.219435 0.677037 3 6 0 0.000000 0.000000 1.375198 4 6 0 0.000000 -1.219435 0.677037 5 6 0 0.000000 -1.277706 -0.720582 6 1 0 0.000000 0.000000 -2.751377 7 1 0 0.000000 2.282599 -1.160124 8 1 0 0.000000 2.141950 1.270463 9 1 0 0.000000 0.000000 2.466695 10 1 0 0.000000 -2.141950 1.270463 11 1 0 0.000000 -2.282599 -1.160124 12 5 0 0.000000 0.000000 -1.532929 --------------------------------------------------------------------- Rotational constants (GHZ): 5.5096294 5.3411965 2.7120528 1|1| IMPERIAL COLLEGE-CHWS-289|FOpt|RB3LYP|6-31G(d,p)|C5H6B1(1-)|EL161 2|11-Mar-2015|0||# opt=tight b3lyp/6-31g(d,p) geom=connectivity integr al=grid=ultrafine||optimisation boratabenzene||-1,1|C,0.,1.277706,-0.7 2058198|C,0.,1.219435,0.67703702|C,0.,0.,1.37519802|C,0.,-1.219435,0.6 7703702|C,0.,-1.277706,-0.72058198|H,0.,0.,-2.75137698|H,0.,2.282599,- 1.16012398|H,0.,2.14195,1.27046302|H,0.,0.,2.46669502|H,0.,-2.14195,1. 27046302|H,0.,-2.282599,-1.16012398|B,0.,0.,-1.53292898||Version=EM64W -G09RevD.01|State=1-A1|HF=-219.020523|RMSD=4.350e-009|RMSF=1.248e-006| Dipole=0.,0.,1.119501|Quadrupole=2.4455931,1.0464886,-3.4920816,0.,0., 0.|PG=C02V [C2(H1B1C1H1),SGV(C4H4)]||@ NATURE GIVES TO EVERY TIME AND SEASON SOME BEAUTY OF ITS OWN. --DICKENS Job cpu time: 0 days 0 hours 0 minutes 10.0 seconds. File lengths (MBytes): RWF= 8 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Wed Mar 11 17:49:06 2015.